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Abstract— In this paper we find the radio D-distance number 

of some standard graphs. If u, v are vertices of a connected graph 

G, the D-length of a connected u-v path s is defined as  (s) = 

l(s) + deg (v) + deg (u) +  deg(w), where the sum runs over all 

intermediate vertices w of s and l(s) is  the length of the path. The 

D-distance (u, v) between two vertices u, v of a connected 

graph G is defined a dᴰ(u, v) = min{ (s)}, where the minimum is 

taken over all u-v paths  s in G. In other words, dᴰ(u, v) = 

min{l(s) + deg(v) + deg(u) + deg(w)}, where the sum runs over 

all intermediate vertices w in s and minimum is taken over all u-v 

paths s in G.               Radio D-distance coloring is a function        

ƒ : V(G) →  such that (u, v) +       ≥ 

(G) + 1, where (G) is the D-distance diameter of 

G. A D-distance radio coloring number of G is the maximum 

color assigned to any vertex of G. It is denoted by (G).  

Keywords— D-distance, Radio D-distance coloring, Radio D-

distance number 

I.  INTRODUCTION 

By a graph G = (V (G), E (G)) we mean a finite undirected 
graph without loops or multiple edges. The order and size of G 
are denoted by p and q respectively. 

If u, v are vertices of a connected graph G, the D-length of 

a connected u-v path s is defined as  (s) = l(s) + deg (v) + 

deg (u) +  deg(w), where the sum runs over all intermediate 
vertices w of s and l(s) is  the length of the path. The D-

distance   (u, v) between two vertices u, v of a connected 

graph G is defined a dᴰ(u, v) = min{ (s)}, where the 
minimum is taken over all u-v paths  s in G. In other words, 

dᴰ(u, v) = min{l(s) + deg(v) + deg(u) + deg(w)}, where the 
sum runs over all intermediate vertices w in s and minimum is 
taken over all u-v paths s in G. Radio          D-distance coloring 

is a function                  ƒ : V(G) →  such that (u, v) +     

  ≥ (G) + 1, where (G) is the 
D-distance diameter of G. A D-distance radio coloring number 
of G is the maximum color assigned to any vertex of G. It is 

denoted by (G). The              D-distance was introduced by 
Reddy Babu et al. [18, 19, 20]. 

Let G be a connected graph of diameter d and let k an 

integer such that   1 k d. A radio k-coloring of G is an 
assignment ƒ of colors (positive integers) to the vertices of G 

such that   d(u, v) +   1 + k for every two 
distinct vertices u, v of G. The radio                          k-coloring 

number (ƒ) of a radio             k-coloring ƒ of G is the 
maximum color assigned to a vertex of G. The radio k-

chromatic number (G) is min{ (ƒ)} over all radio k-
colorings ƒ of G. A radio   k-coloring ƒ of G is a minimal radio            

k-coloring if (ƒ) = (G). A set S of positive integers is a 
radio k-coloring set if the elements of S are used in a radio           
k-coloring of some graph G and S is a minimum radio k-
coloring set if S is a radio k-coloring set of a minimum radio               
k-coloring of some graph G. The radio        1-chromatic 

number (G) is then the chromatic number ꭓ(G). When                      
k = Diam(G), the resulting radio k-coloring is called radio 
coloring of G. The radio number of G is defined as the 
minimum span of a radio coloring of G and is denoted as 
rn(G). 

Radio labeling can be regarded as an extension of distance-
two labeling which is motivated by the channel assignment 
problem introduced by W. K. Hale [6]. G. Chartrand et al.[2] 
introduced the concept of radio labeling of graph. Also G. 
Chartrand et al.[3] gave the upper bound for the radio number 
of path. The exact value for the radio number of path and cycle 
was given by Liu and Zhu [10]. However G. Chartrand et al.[2] 
obtained different values for them. They found the lower and 
upper bound for the radio number of cycle. Liu [9] gave the 
lower bound for the radio number of Tree. The exact value for 
the radio number of Hypercube was given by R. Khennoufa 
and O. Togni [8]. M. M. Rivera et al. [21] gave the radio 

number of  , the Cartesian product of . In [4] C. 
Fernandez et al. found the radio number for complete graph, 
Star graph, Complete Bipartite graph, Wheel graph and Gear 
graph. M. T. Rahim and I. Tomescu [17] investigated the radio 
number of Helm graph. The radio number for the generalized 
prism graphs were presented by Paul Martinez et al. in [11]. In 
this paper, we fined the radio D-distance coloring of some 
standard graphs. 

Definition [12]:  The radio D-distance coloring is a function                   

f : V(G)   such that (u, v) +          

(G) + 1, where (G) is the D-distance diameter 
of G. A radio D-distance coloring number of G is the 
maximum color assigned to any vertex of G. It is denoted by 
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(G). In this paper, we find the radio D-distance number of 
some graphs. 

II. MAIN RESULTS 

Theorem 2.1 

The radio D-distance number of complete graph Kn,  
rnD(Kn) = n. 

Proof 

Since (G) = (u, v) for any u, v  V( ), the 

radio D-distance condition implies   │f(u) – f(v) │  1 for all 

u, v  V( ). 

 Since f:  V( )   is injective, it follows that  

( )  n. Hence ( ) = n, since   

( )  n 

Theorem 2.2 

The radio D-distance number of star graph K1,n, ( ) 

= n + 3, if n  2. 

Proof 

Let V( ) = { , , , . . . , } be vertex set, where 

  is the apex vertex and  E( ) = {  for all i = 1, 2, . . . 

, n} be edge set. Then ( ) = n + 2, 1  n,  

( ) = n + 4, 1  n, So ( ) = n + 4.  

The radio D-distance condition becomes 

( ) +     n + 5, for any vi, vj  

V( ),Now,  (v0, vn) +     n + 5 

Therefore,  rnD(K1,n)  = n + 3  if n ≥ 2. 

Theorem 2.3 

The radio D-distance number of Book with triangle page 
graph K2 + mK1,   

(  + m ) =  m2 – 3m + 5 if  m  5 

Proof 

Let V(  + m ) = { , , , , , . . . , } be 

vertex set and E(  + m ) = { , , , for i = 1, 

2,  . . . , n}. Then ( ) = m + 7, 1  m and 

( ) = m + 4,   and 1  m and 

( ) = 2m + 3. 

Then (  + m ) = 2m + 3. 

Let f(  f(  f(  f( . . .  

f(  f(   

The radio D-distance condition is   

(v1, v2) +     2m + 4 

(v2, u1) +     2m + 4. 

(u1, u2) +     2m + 4 

Define f(ui) = i(m – 3) + 5, 1  m. 

Hence,rnD(  + m ) =  m2 – 3m +5. 

Note 

rnD(  + m )  =  9  if  2 ≤ m ≤ 4. 

Theorem 2.4 

The radio D-distance number of bistar Bn,n,  ( )  = 

 + 3n + 8 ,  n    2. 

Proof 

Let V( ) ={ , , . . . , , , . . . , , 

, } be vertex set, where  ,  are the central vertices.                             

E( ) ={ , ,  : i = 1, 2, . . . ,n} be edge set. 

Then ( ) = 2n + 3,  ( ) = ( ) = 2n + 

5, 1  n, ( ) = ( ) = n + 5, 1  n 

( ) = 2n + 7, 1  n. Then,  ( ) = 
2n + 7. 

Let f(  f(  f(  f(  . . .  f(  

f(   f(  f( . 

The radio D – distance condition is 

dD( , ) + │f( ) –  f( )│≥ 2n + 8 

dD( , ) + │f( ) –  f( )│≥ 2n + 8 

and  dD( , ) + │f( ) –  f( )│≥ 2n + 8 

dD( , ) + │f( ) –  f( )│≥ 2n + 8 

and    dD( , ) + │f( ) –  f( )│≥ 2n + 8 

f( ) = (n + 3)i – (n + 2),  f( ) = (n + 3)i – (n + 1), 1 

  n.  

dD( , ) + │f( ) –  f( )│≥ 2n + 8 

and dD( , ) + │f( ) –  f( )│≥ 2n + 8 

dD( , ) + │f( ) –  f( )│≥ 2n + 8 

and dD( , ) + │f( ) –  f( )│≥ 2n + 8                

Hence,    ( )  =  + 3n + 8 ,  n    2. 

Theorem 2.5 

The radio D-distance number of subdivision of a star graph 

), 
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 ( ))  =  6n + 11,  n  2 

Proof 

Let V( )) = {  , , , . . . , , , . . . , } 

and E( )) = { , },1   n,  where   is the 

apex vertex. Then ( ) = 4, 1   n,   ( ) = 

n + 5, 1   n, 

( ) = n + 6, 1   n, ( ) =  n + 8, 

1   n,   1   n,  . 

 ( ) =  n + 10, 1  n,   1  n, .  So 

(S( ))  =  n + 10.  

Let f(  f(  f(  . . .  f(  

f(  f(   f(  . . .   f( f( . 

The radio D-distance condition becomes 

dD(u1, u2) + │f(u1) – f(u2)│≥ n + 11 

dD(u2, u3) + │f(u2) – f(u3)│≥ n + 11, f(ui)  = i,  1   n, 
f(un)  = n 

dD(un, v1) + │f(un) – f(v1)│≥ n + 11, 

and dD(u1, v1) + │f(u1) – f(v1)│≥ n + 11,  f( ) = max{n 
+3, n + 8} = n + 8 

and dD(v1, v2) + │f(v1) – f(v2)│≥ n + 11, 

f(vi) = n + 5i + 3, 1   n. 

dD(vn, v0) + │f(vn) – f(v0)│≥ n + 11,f(v0)  = 6n + 11 

Hence, (S( )) = 6n + 11,    n    2. 

Theorem 2.6 

The radio D – distance number of complete bipartite graph 

 is 

  ) =   + m (2 – n) + n + 1,  n  m  2. 

Proof 

Let V ) = A  B, where A = { , , . . . ,  and 

B = { , , . . . , } be the partite  sets. Then ( ) = 

n + m + 1, 1  m , 1  n, ( ) = n + 2m + 2, 1 

 n,  

( ) = 2n + m + 2, 1   m. So 

( ) = 2n + m + 2, n m . 

Then, by th radio D-distance condition f(A) = {1, 2, . . . , 
m} 

Without loss of generality,  let f(  f(  f(  

. . .  f(  f( . 

That is, f(  = m. And  let f(  f(  f(  . 

. .  f(  f( . 

dD(um, v1) + │f(um) – f(v1)│≥ 2n + m + 3, f(v1) ≥ n + m + 2,   
f(v1) = n + m + 2 

dD(v1, v2) + │f(v1) – f(v2)│≥ 2n + m + 3,f(v2) = 2n + 3 

dD(v2, v3) + │f(v2) – f(v3)│≥ 2n + m + 3,f(v3) = 3n – m + 4 

dD(v3, v4) + │f(v3) – f(v4)│ ≥ 2n + m+ 3,f(v4) = 4n – 2m + 
5 

f(vi)  =  in – (i – 2)m + (i + 1) , 3  n, 

Hence,    ) =   + m (2 – n) + n + 1,  n  m 

 2. 

Note  

When m = n,     )  =  3n + 1. 

Definition 

The graph  denoting the one point union of t copies 

cycle . The graph   ( or ) is called friendship 
graph. 

Theorem 2.7 

The radio D – distance number of friendship graph   is  

( ) = 3t + 6,  t  2. 

Proof 

Let   V( ) = { , , , . . . , , , . . . 

, },  where   is the apex vertex. 

Let   E( ) = { , 1   2t, , 1   

t}.  Then ( )  = 5, 1  t,   

( ) = 2t+3, 1   2t,  ( ) = 

( ) = 2t + 6, 1   t . 

So  = 2t + 6. Let f(  f(  

f(  . . .  f(  f(   . . .  f(   

f(  f( . 

The radio D-distance condition becomes 

dD(vi , vi + 1) + │f(vi) – f(vi + 1)│≥ 2t + 7,  f(vi)  = i, 1 

  t   

dD(vt, vt + 1) + │f(vt) – f(vt + 1 )│≥ 2t + 7,f(vt + 1)  = t + 1 

But, dD(v1, vt + 1) + │f(v1) – f(vt + 1 )│≥ 2t + 7, f(vt + 1)  = 2t + 
3 and 

dD(v1, vt + 1) + │f(v1) – f(vt + 1 )│≥ 2t + 7,f(vt + 1)  = 2t + 3 
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dD(v2, vt + 2) + │f(v2) – f(vt + 2 )│≥ 2t + 7,f(vt + 2)  =2t + 4, 

f(vt + i)  =2t + i + 2, 1   t 

dD(v2t, v0) + │f(v2t) – f(v0 )│≥ 2t + 7, f(v0) = 3t + 6. 

Therefore, ( )  3t + 6,  t  2                                                  

Therefore, ( ) = 3t + 6,   t  2. 

Theorem 2.8 

The radio D – distance number of degree splitting of a 

bistar graph DS( ) is 

 ( DS( ))  + 5n + 9,  n  2. 

Proof 

Let  V(DS( )) = {u,v, , , ,  : 1 ≤ i ≤ n} and   

E(DS( )) = {uv, , , ,  ,  : 1 

≤ i ≤ n}. Then, ( ) = n + 8, 1   n, (u, v) = 
2n + 5, 

( ) =  (u, vi) = 2n + 8,   1   n,  

( ) =  ( ) = 2n + 3, 1  n 

( ) = 3n + 9, So (DS( )) = 3n + 9,  

n  2. 

Let  

f(  f(  f(  . . .  f(  f(   

f(v   f(  f(   . . .  f( .  

The radio D-distance condition becomes, dD(w1 , w2) + 
│f(w1) – f(w2)│ ≥ 3n + 10 

dD(w2 , u1) + │f(w2) – f(u1)│ ≥ 3n + 10,f(u1)  = 2n + 4 

dD(u1 , u2) + │f(u1) – f(u2)│ ≥ 3n + 10, f(ui) = 2in + 2i + 2, 

1  n 

f(un) = 2n2 + 2n + 2,  dD(un ,v) + │f(un) – f(v)│ ≥ 3n + 10, 
f(v)  = 2n2 + 3n + 4 

dD(v , u) + │f(v) – f(u)│ ≥ 3n + 10, f(u)  = 2n2 + 4n +9 

dD(u , v1) + │f(u) – f(v1)│ ≥ 3n + 10, f(v1)  = 2n2 + 5n + 11 

dD(v1 , v2) + │f(v1) – f(v2)│ ≥ 3n + 10, f(v2)  = 2n2 + 7n + 
13 

dD(v2 , v3) + │f(v2) – f(v3)│ ≥ 3n + 10,f(v3)  = 2n2 + 9n + 
15 

f(vi) =   2n2 + (2in + 3)n + 2i + 9, 1  n. 

Therefore, ( DS( ))  4 +5n + 9,   n  2 

Theorem 2.9 

The radio D-distance number of splitting of a star graph 

S’( ) is  

 rnD( S’( ))  + 3n + 6,  n  2. 

Proof 

 

Let V( ))  = { , , . . . , , , , . . . 

, , } and   

E( ))  = { , , , 1   n }.Then 

(ui, w2) = 3n + 6, 1   n,   

( ) = 2n + 4, 1   n,  . (ui,w1) =  2n 

+ 2, 1   n,  ( ) =  2n + 3, 1  n, 

( ) = n + 6, 1   n,  . (w1,w2) =  3n + 
4 . 

So (S’( ))  = 3n + 6, n  2. Let f(  

f(  f(  f(  . . .  f(    f(   

f(  f(   . . .  f( .          

The radio D-distance condition is dD(u1, w2) + │f(u1) – 
f(w2)│ ≥ 3n + 7,  

dD(w2, u2) + │f(w2) – f(u2)│≥  3n + 7,   

dD(u1, u2) + │f(u1) – f(u2)│≥  3n + 7,  

dD(u2, u3) + │f(u2) – f(v3)│≥ 3n + 7,  

f(ui) = (i – 1)n + 3i – 2, 2  n. dD(un, w1) + │f(un) – 
f(w1)│≥ 3n + 7,  

dD(w1, v1) + │f(w1) – f(v1)│≥ 3n + 7,  dD(v1, v2) + │f(v1) – 
f(v2)│≥  3n + 7 

dD(v2, v3) + │f(v2) – f(v3)│≥  3n + 7,  

f(vi) = n2 + (2i + 2)n + (i + 6), 1   n. 

Therefore,  ( )) = 3n2 + 3n + 6 , n    2. 

Theorem 2.10 

The radio D-distance number of Book graph K2 + nK2 (or 

), rnD(  + n ) = 2n2 – 6n + 1       if  n  5. 

Proof 

Let V(  + n )  = {u, v,  ,  : 1   n} be vertex 

set. Let V(  + n )  = {uv, , ,  : 1   n} be 

edge set. Then (u ) =  n + 7, 1  n and (u, v) =  

2n + 3,   ( )  =  n +4, (ui )  =  n +7,  (ui, vi) 

= 5, 1  n  ( , )  =  n + 10,     , ( , ) = n + 7  

So (  + n ) = 2n + 3. 

Let      f(  f(  f(  f(  f(  . . .  

f(   f(  f(   . . .  f( . 

The radio D-distance condition becomes   

(u, v) +     2n + 4,  

(v, u1) +     2n + 4,  
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But, ( , ) +     2n + 4,  

So,  =  max{n – 1, n + 1}= n + 1,  = n + 1. 

( , ) +     2n + 4 ( , ) + 

    2n + 4, 

f( ) = in – (3i – 4), 1  n. ( , ) + 

    2n + 4,  

But, ( , ) +     2n + 4,    

And ( , ) +     2n + 4,   

f( ) = n2 + (i – 3)n – 3i + 1, 1  n. 

Therefore, rnD(  + n )  = 2n2 – 6n + 1, n  ≥ 5. 

Theorem 2.11 

The radio D – distance number of splitting of a bistar graph 

S’( ) is  

 rnD( S’( ))  + 16n + 18,  n  2. 

Proof 

Let   V( S’( ))  = { , , , , u, , ,  : 

1   n } and E(S’( ))  = { , , , 

, , , , 1   n } .Then ( , ) = 

3n + 9, 1   n,    

( ) = 3n + 9, 1   n, ( , ) =  3n + 10, 

1   n, ( ) =  n + 7, 1   n, 

( ) = 2n + 4, 1   n, (v, ) =  3n + 7, 

( , ) = 2n + 7, 1   n, 

(  ) = 2n + 6, 1   n, ( ) = 3n + 4. 

So (S’( ))  = 3n + 10, n  2. 

Let, f(  f(  f(  . . .  f(  f(  

f(  . . .  f(  f(  f(   

f(  f(   f(  . . . f(  f(  

f(  f(  f(  

The radio D-distance condition becomes 

dD(u,v) + │f(u) – f(v)│ ≥ (S’( ))  + 1. Now, 

( , ) +  ≥ 3n + 11  ( , ) + 

 ≥ 3n + 1,  

 = 2(i – 1)n + 4(i - 1) + 2,   2   n  

( , ) +  ≥ 3n + 11,  

(  )  +  ≥ 3n + 11,  

 = 2  + (i + 2)n + 5i – 3, 1 ≤ i ≤ n. 

( ) +    ≥ 3n + 11,   

( ) +  ≥ 3n + 11 

( ) +  ≥ 3n + 11,  

 ) +  ≥ 3n + 11,  

(  ) +  ≥ 3n + 11 

 = 3  + (i + 8)n +5i + 17, 1 ≤ i ≤ n. 

( , ) +  ≥ 3n + 11,  

(  ) +   ≥ 3n + 11 

(  ) +   ≥ 3n + 11 

 = 4  + (2i + 11)n + 4i + 18, 1 ≤ i ≤ n. 

Therefore, ( )) = 6n2 + 15n + 18 , n    2. 

Theorem 2.12 

The radio D-distance number of triangular snake  is 

 = 10  – 47n + 60 

Proof 

Let   = { , , . . . , , , , . . . , } 

and  = , ,  : 1   n – 1}. 

Then, (  ) = (  ) = 5n – 5, (  ) 
= 5n – 8 

(  ) = (  ) = (  ) = 7, : 

1   n – 2, (  ) = (  ) = 5 

So, ) = 5n – 5. The radio D-distance 
condition becomes  

dD(u,v) + │f(u) – f(v)│ ≥ ( )  + 1  

Let, f(  f(  f(  f(  . . .  

f(  f(  f(  . . .  f( . 

Now, 

(  ) +   5n – 4 

(  ) +   5n – 4 

But, (  ) +   5n – 4 

(  ) +   5n – 4 

 = 5(i – 1)n – 13i + 16, 1 ≤ i ≤ n – 1  

(  ) +   5n – 4 

But, (  ) +   5n – 4 
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Also, (  ) +   5n – 4 

So,  = max{5  – 23n + 32, 5n – 8, 10n – 21} 

(  ) +   5n – 4 

(  ) +   5n – 4 

 5  – (5i – 28)n – 14i + 46, 1 ≤ i ≤ n – 1.  

Therefore, 

 ( )) = 10n2 – 47n + 60 ,  n    4. 
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