On Radio D-distance Number of some basic Graphs

V. Viola
Assistant Professor, Department of Mathematics
St.Jude's College
Thoothoor, Tamil Nadu, India

T. Nicholas
Former Principal
St.Jude's College
Thoothoor, Tamil Nadu, India

Abstract

In this paper we find the radio D-distance number of some standard graphs. If u, v are vertices of a connected graph \boldsymbol{G}, the \boldsymbol{D}-length of a connected u-v path \boldsymbol{s} is defined as $l(s)+\operatorname{deg}(v)+\operatorname{deg}(u)+\Sigma^{\operatorname{deg}(w)}$, where the sum runs over all intermediate vertices w of s and $l(s)$ is the length of the path. The D-distance $d^{D}(\mathbf{u}, \mathbf{v})$ between two vertices \mathbf{u}, \mathbf{v} of a connected graph G is defined a $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})=\min \left\{l^{D}(s)\right\}$, where the minimum is taken over all u-v paths s in G. In other words, $d^{\mathrm{D}}(\mathrm{u}, \mathrm{v})=$ $\min \{l(s)+\operatorname{deg}(v)+\operatorname{deg}(u)+\Sigma \operatorname{deg}(w)\}$, where the sum runs over all intermediate vertices w in s and minimum is taken over all u-v paths s in \mathbf{G}.

Radio D-distance coloring is a function $f: \mathbf{V}(\mathbf{G}) \rightarrow{ }^{\mathbb{N}}$ such that $d^{D}(\mathbf{u}, \mathbf{v})+|f(u)-f(v)| \geq$ $\operatorname{diam}_{(\mathbf{G})+1}$, where diam^{D} (G) is the D-distance diameter of G. A D-distance radio coloring number of G is the maximum color assigned to any vertex of G. It is denoted by r^{D} (G).

Keywords-D-distance, Radio D-distance coloring, Radio Ddistance number

I. Introduction

By a graph $G=(V(G), E(G))$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

If u, v are vertices of a connected graph G, the D-length of a connected u-v path s is defined as ${ }^{D}(s)=l(s)+\operatorname{deg}(\mathrm{v})+$ $\operatorname{deg}(u)+{ }^{\Sigma} \operatorname{deg}(\mathrm{w})$, where the sum runs over all intermediate vertices w of s and $l(s)$ is the length of the path. The D distance $d^{D}(\mathrm{u}$ (u, v) between two vertices u, v of a connected graph G is defined a $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})=\min \left\{l^{D}(s)\right\}$, where the minimum is taken over all u-v paths s in G. In other words, $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})=\min \left\{l(\mathrm{~s})+\operatorname{deg}(\mathrm{v})+\operatorname{deg}(\mathrm{u})+\Sigma_{\operatorname{deg}(\mathrm{w})}\right\}$, where the sum runs over all intermediate vertices w in s and minimum is taken over all u-v paths s in G. Radio D-distance coloring is a function $\quad f: \mathrm{V}(\mathrm{G}) \rightarrow{ }^{\mathbb{N}}$ such that $d^{D}(\mathrm{u}, \mathrm{v})+$ $|f(u)-f(v)| \geq \operatorname{diam}_{(\mathrm{G})+1}$, where $^{\operatorname{diam}^{D}}(\mathrm{G})$ is the D-distance diameter of G. A D-distance radio coloring number of G is the maximum color assigned to any vertex of G. It is denoted by $r n^{D}(\mathrm{G})$. The \quad D-distance was introduced by Reddy Babu et al. [18, 19, 20].

Let G be a connected graph of diameter d and let k an integer such that $1 \leq_{\mathrm{k}} \leq_{\mathrm{d} \text {. A radio k-coloring of } \mathrm{G} \text { is an }}$ assignment f of colors (positive integers) to the vertices of G such that $\mathrm{d}(\mathrm{u}, \mathrm{v})+|f(u)-f(v)| \geq 1+\mathrm{k}$ for every two distinct vertices u, v of G. The radio
k -coloring number $r c_{k(f)}$ of a radio \quad k-coloring f of G is the maximum color assigned to a vertex of G . The radio k chromatic number $r c_{k(G)}$ is $\min \left\{{ }^{r} c_{k(f)}\right\}$ over all radio kcolorings f of G . A radio k-coloring f of G is a minimal radio k -coloring if $r c_{k(f)}=r c_{k(\mathrm{G})}$. A set S of positive integers is a radio k-coloring set if the elements of S are used in a radio k -coloring of some graph G and S is a minimum radio kcoloring set if S is a radio k -coloring set of a minimum radio k -coloring of some graph G . The radio 1 -chromatic number $r C_{1(G)}$ is then the chromatic number $\chi(G)$. When $\mathrm{k}=\operatorname{Diam}(\mathrm{G})$, the resulting radio k -coloring is called radio coloring of G. The radio number of G is defined as the minimum span of a radio coloring of G and is denoted as $\operatorname{rn}(\mathrm{G})$.

Radio labeling can be regarded as an extension of distancetwo labeling which is motivated by the channel assignment problem introduced by W. K. Hale [6]. G. Chartrand et al.[2] introduced the concept of radio labeling of graph. Also G. Chartrand et al.[3] gave the upper bound for the radio number of path. The exact value for the radio number of path and cycle was given by Liu and Zhu [10]. However G. Chartrand et al.[2] obtained different values for them. They found the lower and upper bound for the radio number of cycle. Liu [9] gave the lower bound for the radio number of Tree. The exact value for the radio number of Hypercube was given by R. Khennoufa and O. Togni [8]. M. M. Rivera et al. [21] gave the radio number of $C_{n} \times C_{n}$, the Cartesian product of C_{n}. In [4] C. Fernandez et al. found the radio number for complete graph, Star graph, Complete Bipartite graph, Wheel graph and Gear graph. M. T. Rahim and I. Tomescu [17] investigated the radio number of Helm graph. The radio number for the generalized prism graphs were presented by Paul Martinez et al. in [11]. In this paper, we fined the radio D-distance coloring of some standard graphs.

Definition [12]: The radio D-distance coloring is a function $f: \mathrm{V}(\mathrm{G}) \rightarrow \mathbb{N}_{\text {such that }} d_{(\mathrm{u}, \mathrm{v})+}^{D}|f(u)-f(v)| \geq$ $\operatorname{diam}^{D}(\mathrm{G})+1$, where $\operatorname{diam}^{D}(\mathrm{G})$ is the D-distance diameter of G. A radio D-distance coloring number of G is the maximum color assigned to any vertex of G. It is denoted by
$r c^{D}$
(G). In this paper, we find the radio D-distance number of some graphs.

II. MAIN RESULTS

Theorem 2.1

The radio D-distance number of complete graph K_{n}, $\mathrm{mn}^{\mathrm{D}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}$.

Proof

Since $\operatorname{diam}^{D}(\mathrm{G})=d^{D}(\mathrm{u}, \mathrm{v})$ for any $\mathrm{u}, \mathrm{v} \in \mathrm{V}\left(K_{n}\right)$, the radio D-distance condition implies $|f(\mathrm{u})-f(\mathrm{v})| \geq 1$ for all $\mathrm{u}, \mathrm{v} \in_{\mathrm{V}(} K_{n)}$.

Since f: $\mathrm{V}\left(K_{n}\right) \rightarrow \mathbb{N}$ is injective, it follows that
 $r n^{D}\left(K_{n)} \leq_{\mathrm{n}}\right.$

Theorem 2.2

The radio D-distance number of star graph $\mathrm{K}_{1, \mathrm{n}}, r n^{D}\left(K_{1, n}\right)$ $=n+3$, if $\mathrm{n} \geq 2$.

Proof

Let $\mathrm{V}\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be vertex set, where v_{0} is the apex vertex and $\mathrm{E}\left(K_{1, n}\right)=\left\{v_{0} v_{i}\right.$ for all i $=1,2, \ldots$, n\} be edge set. Then $d^{D}\left(v_{0}, v_{i}\right)=\mathrm{n}+2,1 \leq i \leq \mathrm{n}$, $d^{D}\left(v_{i}, v_{j}\right)=\mathrm{n}+4,1 \leq i, j \leq \mathrm{n}_{\mathrm{n}, \mathrm{So}} \operatorname{diam}^{D}\left(K_{1, n}\right)=\mathrm{n}+4$.

The radio D-distance condition becomes
$d^{D}\left(v_{i}, v_{j)}\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq \mathrm{n}+5\right.$, for any vi, vj \in $\mathrm{V}\left(K_{1, n}\right)$,Now, $d_{\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{n}}\right)+}\left|f\left(v_{0}\right)-f\left(v_{n}\right)\right| \geq{ }_{\mathrm{n}+5}$

Therefore, $\mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{n}+3$ if $\mathrm{n} \geq 2$.

Theorem 2.3

The radio D-distance number of Book with triangle page graph $\mathrm{K}_{2}+\mathrm{mK} \mathrm{K}_{1}$,

$$
r n^{D}\left(K_{2}+\mathrm{m}_{1}\right)=\mathrm{m}^{2}-3 \mathrm{~m}+5 \text { if } \mathrm{m} \geq 5
$$

Proof

Let $\mathrm{V}\left(K_{2}+\mathrm{m} K_{1}\right)=\left\{v_{1}, v_{2}, u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ be vertex set and $\mathrm{E}\left(K_{2}+\mathrm{m}_{1}\right)=\left\{v_{1} v_{2}, v_{1} u_{i,} v_{2} u_{i}\right.$, for $\mathrm{i}=1$, $2, \ldots, \mathrm{n}\}$. Then $d^{D}\left(u_{i}, u_{j}\right)=\mathrm{m}+7,1 \leq i, j \leq \mathrm{m}$ and $d^{D}\left(v_{i}, u_{j}\right)=\mathrm{m}+4, \quad i=1,2$ and $1 \leq j \leq \mathrm{m}$ and $d^{D}\left(v_{1}, v_{2}\right)=2 \mathrm{~m}+3$.

Then $\operatorname{diam}^{D}\left(K_{2}+\mathrm{m}^{1}\right)=2 \mathrm{~m}+3$.
Let $\mathrm{f}\left(v_{1}\right)<\mathrm{f}\left(v_{2}\right)<\mathrm{f}\left(u_{1}\right)<\mathrm{f}\left(u_{2}\right)<. .<$ $\left.\mathrm{f}\left(u_{m-1}\right)<_{\mathrm{f}(} u_{m}\right)$

The radio D-distance condition is

$$
\begin{aligned}
& d^{D}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\left|f\left(v_{1}\right)-f\left(v_{2}\right)\right| \geq 2 \mathrm{~m}+4 \\
& d^{D}\left(\mathrm{v}_{2}, \mathrm{u}_{1}\right)+\left|f\left(v_{2}\right)-f\left(u_{1}\right)\right| \geq 2 \mathrm{~m}+4 \\
& d^{D}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)+\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right| \geq 2 \mathrm{~m}+4 \\
& \text { Define } \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}(\mathrm{~m}-3)+5,1 \leq i \leq \mathrm{m}_{\mathrm{m}} . \\
& \text { Hence, } \mathrm{rn}^{\mathrm{D}}\left(K_{2}+\mathrm{m}_{1}\right)=\mathrm{m}^{2}-3 \mathrm{~m}+5
\end{aligned}
$$

Note

$$
\mathrm{rn}^{\mathrm{D}}\left(K_{2}+\mathrm{m}_{1}\right)=9 \text { if } 2 \leq \mathrm{m} \leq 4
$$

Theorem 2.4

The radio D-distance number of bistar $\mathrm{B}_{\mathrm{n}, \mathrm{n}}, r n^{D}\left(B_{n, n}\right)=$ $n^{2}+3 n+8, \mathrm{n} \geq 2$.

Proof

Let $\mathrm{V}\left(B_{n, n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right.$, $x_{1}, x_{2\}}$ be vertex set, where x_{1}, x_{2} are the central vertices. $\mathrm{E}\left(B_{n, n}\right)=\left\{x_{1} x_{2}, x_{1} v_{i}, x_{2} u_{i}: \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$ be edge set. Then $d^{D}\left(x_{1}, x_{2}\right)=2 \mathrm{n}+3, d^{D}\left(x_{1}, u_{i}\right)=d^{D}\left(v_{i}, x_{2}\right)=2 \mathrm{n}+$ $5,1 \leq i \leq{ }_{\mathrm{n},} d^{D}\left(u_{i}, u_{j)}=d^{D}\left(v_{i}, v_{j)}=\mathrm{n}+5,1 \leq i_{j} j \leq \mathrm{n}_{\mathrm{n}}\right.\right.$ $d^{D}\left(v_{i}, u_{i}\right)=2 \mathrm{n}+7,1 \leq i \leq \mathrm{n}$. Then, $\operatorname{diam}^{D}\left(B_{n, n}\right)=$ $2 n+7$.

$$
\begin{aligned}
& \text { Let } \left.\mathrm{f}\left(v_{1}\right)<\mathrm{f}_{\mathrm{f}}\left(u_{1}\right)<\mathrm{f}_{\mathrm{f}}\left(v_{2}\right)<{ }_{\mathrm{f}\left(u_{2}\right)<\ldots}<_{\mathrm{f}\left(v_{m}\right)}\right)< \\
& \mathrm{f}\left(u_{m}\right)<{ }_{\mathrm{f}\left(x_{1}\right)}<{ }_{\mathrm{f}\left(x_{2}\right) .} \\
& \text { The radio D }- \text { distance condition is }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}^{\mathrm{D}}\left({ }^{v_{1}}, u_{1}\right)+\left|\mathrm{f}\left(v_{1}\right)-\mathrm{f}\left({ }^{u_{1}}\right)\right| \geq 2 \mathrm{n}+8 \\
& \mathrm{~d}^{\mathrm{D}}\left({ }^{u_{1}}, v_{2}\right)+\mid \mathrm{f}\left({ }^{\left(u_{1}\right)}-\mathrm{f}\left({ }^{\left(v_{2}\right.}\right) \mid \geq 2 \mathrm{n}+8\right. \\
& \text { and } \mathrm{d}^{\mathrm{D}}\left(v_{1}, v_{2}\right)+\left|\mathrm{f}\left({ }^{v_{1}}\right)-\mathrm{f}\left(v_{2}\right)\right| \geq 2 \mathrm{n}+8 \\
& \mathrm{~d}^{\mathrm{D}}\left({ }^{v_{2}},{ }_{2} u_{2}\right)+\left|\mathrm{f}\left(v_{2}\right)-\mathrm{f}\left({ }^{u_{2}}\right)\right| \geq 2 \mathrm{n}+8 \\
& \text { and } \mathrm{d}^{\mathrm{D}}\left({ }^{u_{1}}, u_{2}\right)+\left|\mathrm{f}\left({ }^{u_{1}}\right)-\mathrm{f}\left({ }_{2}\right)\right| \geq 2 \mathrm{n}+8 \\
& \mathrm{f}\left(v_{i}\right)=(\mathrm{n}+3) \mathrm{i}-(\mathrm{n}+2), \quad \mathrm{f}\left({ }_{i}\right)=(\mathrm{n}+3) \mathrm{i}-(\mathrm{n}+1), 1 \\
& \leq i \leq \mathrm{n} .
\end{aligned}
$$

$$
\mathrm{d}^{\mathrm{D}}\left(u_{n,} x_{1}\right)+\mid \mathrm{f}\left({ }^{\left(u_{n}\right)-\mathrm{f}}{\left({ }^{x_{1}}\right) \mid \geq 2 \mathrm{n}+8}\right.
$$

$$
\text { and } \mathrm{d}^{\mathrm{D}}\left(v_{n}, x_{1}\right)+\left|\mathrm{f}\left(v_{n}\right)-\mathrm{f}\left({ }^{x_{1}}\right)\right| \geq 2 \mathrm{n}+8
$$

$$
\mathrm{d}^{\mathrm{D}}\left(x_{1}, x_{2}\right)+\left|\mathrm{f}\left(x_{1}\right)-\mathrm{f}\left({ }^{\left(x_{2}\right.}\right)\right| \geq 2 \mathrm{n}+8
$$

$$
\text { and } \mathrm{d} \mathrm{D}\left(u_{n}, x_{2}\right)+\mid \mathrm{f}\left(u_{n)}-\mathrm{f}\left(x_{2}\right) \mid \geq 2 \mathrm{n}+8\right.
$$

$$
\text { Hence, } \left.\quad r n^{D} B_{n, n}\right)=n^{2}+3 n+8, \mathrm{n} \geq 2
$$

Theorem 2.5

The radio D-distance number of subdivision of a star graph $S\left(K_{1, n}\right)$,

$$
r n^{D} S\left(K_{1, n))}=6 \mathrm{n}+11, \mathrm{n} \geq 2\right.
$$

Proof

Let $\mathrm{V}\left(S\left(K_{1, n)}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}\right.$ and $\mathrm{E}\left(S\left(K_{1, n}\right)\right)=\left\{v_{0} v_{i}, v_{i} u_{i}\right\}, 1 \leq i \leq \mathrm{n}$, where v_{0} is the apex vertex. Then $d^{D}\left(v_{i}, u_{i}\right)=4,1 \leq i \leq{ }_{\mathrm{n}}, \quad d^{D}\left(v_{0}, u_{i}\right)=$ $\mathrm{n}+5,1 \leq i \leq \mathrm{n}$,
$d^{D}\left(v_{i}, v_{j)}=\mathrm{n}+6,1 \leq i, j \leq \mathrm{n}, d^{D}\left(v_{i}, u_{j}\right)=\mathrm{n}+8\right.$, $1 \leq i \leq{ }_{\mathrm{n}, 1} \leq j \leq_{\mathrm{n},} i \neq j$.
$d^{D}\left(u_{i}, u_{j}\right)=\mathrm{n}+10,1 \leq i \leq \leq_{\mathrm{n}, 1} \leq j \leq_{\mathrm{n},} i \neq j$. So $\operatorname{diam}^{D}\left(\mathrm{~S}\left(K_{1, n}\right)\right)=\mathrm{n}+10$.

Let $\mathrm{f}\left(u_{1}\right)<\mathrm{f}\left(u_{2}\right)<\mathrm{f}\left(u_{3}\right)<\ldots<\mathrm{f}\left(u_{n-1}\right)<$ $\mathrm{f}\left(u_{n}\right)<{ }_{\mathrm{f}\left(v_{1}\right)}<_{\mathrm{f}\left(v_{2}\right)} \ldots_{\mathrm{f}\left(v_{n}\right)}<_{\mathrm{f}\left(v_{0}\right)}$.

The radio D-distance condition becomes
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)+\left|\mathrm{f}\left(\mathrm{u}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{2}\right)\right| \geq \mathrm{n}+11$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{u}_{3}\right)+\left|\mathrm{f}\left(\mathrm{u}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{3}\right)\right| \geq \mathrm{n}+11, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq i \leq \mathrm{n}$, $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}$
$d^{D}\left(u_{n}, v_{1}\right)+\left|f\left(u_{n}\right)-f\left(v_{1}\right)\right| \geq n+11$,
and $\mathrm{d}^{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)+\left|\mathrm{f}\left(\mathrm{u}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{1}\right)\right| \geq \mathrm{n}+11, \mathrm{f}\left({ }^{v_{1}}\right)=\max \{\mathrm{n}$ $+3, \mathrm{n}+8\}=\mathrm{n}+8$
and $d^{D}\left(v_{1}, v_{2}\right)+\left|f\left(v_{1}\right)-f\left(v_{2}\right)\right| \geq n+11$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+5 \mathrm{i}+3,1 \leq i \leq \mathrm{n}$.
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{0}\right)+\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)-\mathrm{f}\left(\mathrm{v}_{0}\right)\right| \geq \mathrm{n}+11, \mathrm{f}\left(\mathrm{v}_{0}\right)=6 \mathrm{n}+11$
Hence, $r n^{D}\left(\mathrm{~S}\left(K_{1, n}\right)\right)=6 \mathrm{n}+11, \quad \mathrm{n} \geq 2$.

Theorem 2.6

The radio D - distance number of complete bipartite graph $K_{m, n}$ is

$$
r n^{D}\left(K_{m, n)}=n^{2}+\mathrm{m}(2-\mathrm{n})+\mathrm{n}+1, \mathrm{n} \geq_{\mathrm{m}} \geq_{2}\right.
$$

Proof

Let $\mathrm{V}\left(K_{m, n}\right)=\mathrm{A} \cup_{\mathrm{B}}$, where $\mathrm{A}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $\mathrm{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the partite sets. Then $d^{D}\left(u_{i}, v_{j}\right)=$ $\mathrm{n}+\mathrm{m}+1,1 \leq i \leq \mathrm{m}_{\mathrm{m}} 1 \leq j \leq_{\mathrm{n},} d^{D}\left(v_{i}, v_{j}\right)=\mathrm{n}+2 \mathrm{~m}+2,1$ $\leq i_{j} j \leq_{\mathrm{n}}$
$d^{D}\left(u_{i}, u_{j}\right)=2 \mathrm{n}+\mathrm{m}+2,1 \leq i_{j} j \leq$ m. So $\operatorname{diam}^{D}\left(K_{m, n}\right)=2 \mathrm{n}+\mathrm{m}+2, \mathrm{n} \geq \mathrm{m} \geq 2$.

Then, by th radio D-distance condition $f(A)=\{1,2, \ldots$, m $\}$

Without loss of generality, let $\mathrm{f}\left({ }^{u_{1}}\right)<{ }_{\mathrm{f}}\left(u_{2}\right)<{ }_{\mathrm{f}\left(u_{3}\right)}<$ $\left.\left.<_{\mathrm{f}(} u_{m-1}\right)<{ }_{\mathrm{f}(} u_{m}\right)$.

That is, $\mathrm{f}\left(u_{m}\right)=\mathrm{m}$. And let $\left.\mathrm{f}\left(u_{m}\right)<{ }_{\mathrm{f}\left(v_{1}\right)}<_{\mathrm{f}\left(v_{2}\right)}\right)<$ $<{ }_{\mathrm{f}\left(v_{m-1}\right)}<_{\mathrm{f}\left(v_{m}\right)}$.
$d^{D}\left(u_{m}, v_{1}\right)+\left|f\left(u_{m}\right)-f\left(v_{1}\right)\right| \geq 2 n+m+3, f\left(v_{1}\right) \geq n+m+2$, $\mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{n}+\mathrm{m}+2$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\left|\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{2}\right)\right| \geq 2 \mathrm{n}+\mathrm{m}+3, \mathrm{f}\left(\mathrm{v}_{2}\right)=2 \mathrm{n}+3$
$d^{D}\left(v_{2}, v_{3}\right)+\left|f\left(v_{2}\right)-f\left(v_{3}\right)\right| \geq 2 n+m+3, f\left(v_{3}\right)=3 n-m+4$
$d^{D}\left(v_{3}, v_{4}\right)+\left|f\left(v_{3}\right)-f\left(v_{4}\right)\right| \geq 2 n+m+3, f\left(v_{4}\right)=4 n-2 m+$ 5
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{in}-(\mathrm{i}-2) \mathrm{m}+(\mathrm{i}+1), 3 \leq i \leq \mathrm{n}_{\mathrm{n}}$,
Hence, $\quad r n^{D}\left(K_{m, n}\right)=n^{2}+\mathrm{m}(2-\mathrm{n})+\mathrm{n}+1, \mathrm{n} \geq \mathrm{m}$ ≥ 2.

Note

$$
\text { When } \mathrm{m}=\mathrm{n}, \quad r n^{D}\left(K_{m, n}\right)=3 \mathrm{n}+1 .
$$

Definition

The graph $C_{n}^{(t)}$ denoting the one point union of t copies cycle C_{n}. The graph $C_{3}^{(t)}$ (or $K_{3}^{(t)}$) is called friendship graph.

Theorem 2.7

The radio D - distance number of friendship graph $C_{3}^{(t)}$ is $r n^{D}\left(C_{3}^{(t)}\right)=3 \mathrm{t}+6, \mathrm{t} \geq 2$.

Proof

Let $\quad \mathrm{V}\left(C_{3}^{(t)}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{t}, v_{t+1}, v_{t+2}, \ldots\right.$
$\left.v_{2 t}\right\}$, where v_{0} is the apex vertex.
Let $\mathrm{E}\left(C_{3}^{(t)}\right)=\left\{v_{0} v_{i, 1} \leq i \leq 2 \mathrm{t}, \quad v_{i} v_{t+i, 1} \leq i \leq\right.$ t $\}$. Then $d^{D}\left(v_{i}, v_{t+i}\right)=5,1 \leq i \leq{ }_{\mathrm{t}}$,
$d^{D}\left(v_{0}, v_{i}\right)=2 \mathrm{t}+3,1 \leq i \leq 2 \mathrm{t}, \quad d^{D}\left(v_{t+i}, v_{i+1}\right)=$ $\left.d^{D} v_{t+i}, v_{t+i+1}\right)=2 \mathrm{t}+6,1 \leq i \leq{ }_{\mathrm{t}}$.

So $\operatorname{diam}^{D}\left(C_{3}^{(t)}\right)=2 \mathrm{t}+6$. Let $\mathrm{f}\left(v_{1}\right)<\mathrm{f}\left(v_{2}\right)<$ $\mathrm{f}\left(v_{3}\right)<\ldots<{ }_{\mathrm{f}\left(v_{t}\right)}<_{\mathrm{f}\left(v_{t+1}\right)}<\ldots<{ }_{\mathrm{f}\left(v_{t+(t-1)}\right)}<$ $\mathrm{f}\left(v_{2 t}\right)<{ }_{\mathrm{f}\left(v_{0}\right)}$.

The radio D -distance condition becomes
$d^{D}\left(v_{i}, v_{i}+1\right)+\left|f\left(v_{i}\right)-f\left(v_{i}+1\right)\right| \geq 2 t+7, \quad f\left(v_{i}\right)=i, 1$ $\leq i \leq{ }_{\mathrm{t}}$
$d^{D}\left(v_{t}, v_{t+1}\right)+\left|f\left(v_{t}\right)-f\left(v_{t+1}\right)\right| \geq 2 t+7, f\left(v_{t+1}\right)=t+1$
But, $d^{D}\left(v_{1}, v_{t+1}\right)+\left|f\left(v_{1}\right)-f\left(v_{t+1}\right)\right| \geq 2 t+7, f\left(v_{t+1}\right)=2 t+$ 3 and
$d^{D}\left(v_{1}, v_{t+1}\right)+\left|f\left(v_{1}\right)-f\left(v_{t+1}\right)\right| \geq 2 t+7, f\left(v_{t+1}\right)=2 t+3$
$d^{D}\left(v_{2}, v_{t+2}\right)+\left|f\left(v_{2}\right)-f\left(v_{t+2}\right)\right| \geq 2 t+7, f\left(v_{t+2}\right)=2 t+4$, $\mathrm{f}\left(\mathrm{v}_{\mathrm{t}+\mathrm{i}}\right)=2 \mathrm{t}+\mathrm{i}+2,1 \leq i \leq{ }_{\mathrm{t}}$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{0}\right)+\left|\mathrm{f}\left(\mathrm{v}_{2} \mathrm{t}\right)-\mathrm{f}\left(\mathrm{v}_{0}\right)\right| \geq 2 \mathrm{t}+7, \mathrm{f}\left(\mathrm{v}_{0}\right)=3 \mathrm{t}+6$.
Therefore, $r n^{D}\left(C_{3}^{(t)}\right) \leq 3 \mathrm{t}+6, \mathrm{t} \geq_{2}$
Therefore, $r n^{D}\left(C_{3}^{(t)}\right)=3 \mathrm{t}+6, \mathrm{t} \geq 2$.

Theorem 2.8

The radio D - distance number of degree splitting of a bistar graph DS $\left(B_{n, n}\right)$ is

$$
r n_{\left(\mathrm{DS}\left({ }^{D} n, n\right)\right)}=4 n^{2}+5 \mathrm{n}+9, \mathrm{n} \geq_{2}
$$

Proof

Let $\operatorname{V}\left(\mathrm{DS}\left(B_{n, n)}\right)=\left\{\mathrm{u}, \mathrm{v}, u_{i}, v_{i}, w_{1}, w_{2}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right.$ and $\mathrm{E}\left(\mathrm{DS}\left(B_{n, n}\right)\right)=\left\{\mathrm{uv}, u u_{i,} v v_{i,}, u_{i} w_{1}, v_{i} w_{1}, u w_{2}, v w_{2}: 1\right.$ $\leq \mathrm{i} \leq \mathrm{n}\}$. Then, $d^{D}{ }_{\left(u_{i}, w_{2}\right)}=\mathrm{n}+8,1 \leq i \leq{ }_{\mathrm{n},} d^{D}(\mathrm{u}, \mathrm{v})=$ $2 \mathrm{n}+5$,

$$
d^{D}\left(u_{i}, v\right)=d^{D}{ }_{\left(\mathrm{u}, \mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{n}+8, \quad 1 \leq i \leq \mathrm{n}, ~}^{d^{D}}, \quad,{ }_{i}
$$

$\left.d^{D}\left(u_{i}, w_{1}\right)=d^{D}{ }_{\left(w_{1},\right.}, v_{i}\right)=2 \mathrm{n}+3,1 \leq i \leq \mathrm{v}_{\mathrm{n}}$

$$
\left.d^{D}\left(w_{1}, w_{2}\right)=3 \mathrm{n}+9, \text { So } \operatorname{diam}_{(\mathrm{DS}}\left(B_{(n, n)}\right)\right)=3 \mathrm{n}+9,
$$ ${ }_{n} \geq 2$.

Let
$\mathrm{f}\left(w_{1}\right)<{ }_{\mathrm{f}}\left(w_{2}\right)<{ }_{\mathrm{f}}\left(u_{1}\right)<\ldots<_{\mathrm{f}\left(u_{n-1}\right)}<_{\mathrm{f}}\left(u_{n}\right)<$ $\mathrm{f}(\mathrm{v})<f(u)<_{\mathrm{f}\left(v_{1}\right)}<_{\mathrm{f}\left(v_{2}\right)}<\ldots<_{\mathrm{f}}\left(v_{n}\right)$.

The radio D -distance condition becomes, $\mathrm{d}^{\mathrm{D}}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)+$ $\left|\mathrm{f}\left(\mathrm{w}_{1}\right)-\mathrm{f}\left(\mathrm{w}_{2}\right)\right| \geq 3 \mathrm{n}+10$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{w}_{2}, \mathrm{u}_{1}\right)+\left|\mathrm{f}\left(\mathrm{w}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{1}\right)\right| \geq 3 \mathrm{n}+10, \mathrm{f}\left(\mathrm{u}_{1}\right)=2 \mathrm{n}+4$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)+\left|\mathrm{f}\left(\mathrm{u}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{2}\right)\right| \geq 3 \mathrm{n}+10, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{in}+2 \mathrm{i}+2$, $1 \leq i \leq{ }_{\mathrm{n}}$
$f\left(u_{n}\right)=2 n^{2}+2 n+2, d^{D}\left(u_{n}, v\right)+\left|f\left(u_{n}\right)-f(v)\right| \geq 3 n+10$, $f(v)=2 n^{2}+3 n+4$
$\mathrm{d}^{\mathrm{D}}(\mathrm{v}, \mathrm{u})+|\mathrm{f}(\mathrm{v})-\mathrm{f}(\mathrm{u})| \geq 3 \mathrm{n}+10, \mathrm{f}(\mathrm{u})=2 \mathrm{n}^{2}+4 \mathrm{n}+9$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{u}, \mathrm{v}_{1}\right)+\left|\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{v}_{1}\right)\right| \geq 3 \mathrm{n}+10, \mathrm{f}\left(\mathrm{v}_{1}\right)=2 \mathrm{n}^{2}+5 \mathrm{n}+11$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\left|\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{2}\right)\right| \geq 3 \mathrm{n}+10, \mathrm{f}\left(\mathrm{v}_{2}\right)=2 \mathrm{n}^{2}+7 \mathrm{n}+$ 13
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\left|\mathrm{f}\left(\mathrm{v}_{2}\right)-\mathrm{f}\left(\mathrm{v}_{3}\right)\right| \geq 3 \mathrm{n}+10, \mathrm{f}\left(\mathrm{v}_{3}\right)=2 \mathrm{n}^{2}+9 \mathrm{n}+$ 15
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{n}^{2}+(2 \mathrm{in}+3) \mathrm{n}+2 \mathrm{i}+9,1 \leq i \leq{ }_{\mathrm{n}}$.
Therefore, $r n^{D}\left(\mathrm{DS}\left(B_{(n, n))}\right)={ }_{4} n^{2}+5 \mathrm{n}+9, \mathrm{n} \geq 2\right.$

Theorem 2.9

The radio D-distance number of splitting of a star graph $\mathrm{S}^{\prime}\left(K_{1, n}\right)$ is

$$
\mathrm{mn}^{\mathrm{D}}\left(\mathrm{~S}^{\prime}\left(K_{1, n}\right)\right)=3 n^{2}+3 \mathrm{n}+6, \mathrm{n} \geq 2
$$

Proof

Let $\mathrm{V}\left(S^{\prime}\left(K_{1, n}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots\right.$, $\left.v_{n}, w_{1}, w_{2}\right\}$ and
${ }_{\mathrm{E}} \mathrm{S}^{\prime}\left(K_{1, n)}\right)=\left\{u_{i} w_{1}, w_{1} v_{i,} v_{i} w_{2,1} \leq i \leq \mathrm{n}\right\}$.Then $d^{D}{ }_{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{2}\right)}=3 \mathrm{n}+6,1 \leq i \leq{ }_{\mathrm{n}}$,

$$
d^{D}\left(u_{i}, u_{j)}=2 \mathrm{n}+4,1 \leq i, j \leq \mathrm{n}_{\mathrm{n}}, i \neq j d^{D}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{1}\right)=2 \mathrm{n}\right.
$$ $+2,1 \leq i \leq \mathrm{n}, \quad d^{D}\left(w_{1}, v_{i}\right)=2 \mathrm{n}+3,1 \leq i \leq{ }_{\mathrm{n}}$, $d^{D}\left(v_{i}, u_{j}\right)=\mathrm{n}+6,1 \leq i, j \leq \mathrm{n}_{\mathrm{n}}, i \neq j \cdot d^{D}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=3 \mathrm{n}+$ 4.

So $\left.\operatorname{diam}^{D}{ }_{(\mathrm{S}},\left(K_{1, n}\right)\right)=3 \mathrm{n}+6, \mathrm{n} \geq 2$. Let $\mathrm{f}\left(u_{1}\right)<$ $\left.\mathrm{f}\left(w_{2}\right)<{ }_{\mathrm{f}}\left(u_{2}\right)<{ }_{\mathrm{f}\left(u_{3}\right)}\right) \ldots{ }_{\mathrm{f}\left(u_{n}\right)<}{ }_{\mathrm{f}\left(w_{1}\right)}<$ $\mathrm{f}\left(v_{1}\right)<{ }_{\mathrm{f}}\left(v_{2}\right)<\ldots<_{\mathrm{f}}\left(v_{n}\right)$.

The radio D-distance condition is $d^{D}\left(u_{1}, w_{2}\right)+\mid f\left(u_{1}\right)-$ $f\left(w_{2}\right) \mid \geq 3 n+7$,
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{w}_{2}, \mathrm{u}_{2}\right)+\left|\mathrm{f}\left(\mathrm{w}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{2}\right)\right| \geq 3 \mathrm{n}+7$,
$\mathrm{d}^{\mathrm{D}}\left(\mathbf{u}_{1}, \mathrm{u}_{2}\right)+\left|\mathrm{f}\left(\mathrm{u}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{2}\right)\right| \geq 3 \mathrm{n}+7$,
$d^{D}\left(u_{2}, u_{3}\right)+\left|f\left(u_{2}\right)-f\left(v_{3}\right)\right| \geq 3 n+7$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=(\mathrm{i}-1) \mathrm{n}+3 \mathrm{i}-2,2 \leq i \leq \mathrm{n}_{\mathrm{n}} \mathrm{d}^{\mathrm{D}}\left(\mathrm{u}_{\mathrm{n}}, \mathrm{w}_{1}\right)+\mid \mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)-$ $f\left(w_{1}\right) \mid \geq 3 n+7$,
$d^{D}\left(w_{1}, v_{1}\right)+\left|f\left(w_{1}\right)-f\left(v_{1}\right)\right| \geq 3 n+7, d^{D}\left(v_{1}, v_{2}\right)+\mid f\left(v_{1}\right)-$ $\mathrm{f}\left(\mathrm{v}_{2}\right) \mid \geq 3 \mathrm{n}+7$
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\left|\mathrm{f}\left(\mathrm{v}_{2}\right)-\mathrm{f}\left(\mathrm{v}_{3}\right)\right| \geq 3 \mathrm{n}+7$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}^{2}+(2 \mathrm{i}+2) \mathrm{n}+(\mathrm{i}+6), 1 \leq i \leq \mathrm{n}$.
Therefore, $r n^{D}\left(S^{\prime}\left(K_{1, n}\right)\right)=3 \mathrm{n}^{2}+3 \mathrm{n}+6, \mathrm{n} \geq 2$.

Theorem 2.10

The radio D-distance number of Book graph $\mathrm{K}_{2}+\mathrm{nK}_{2}$ (or $\left.B_{4}^{n}\right), \mathrm{rn}^{\mathrm{D}}\left(K_{2}+\mathrm{n}_{2}\right)=2 \mathrm{n}^{2}-6 \mathrm{n}+1 \quad$ if $\mathrm{n} \geq 5$.

Proof

Let $\mathrm{V}\left(K_{2}+{ }_{\mathrm{n}} K_{2}\right)=\left\{\mathrm{u}, \mathrm{v}, u_{i,} v_{i}: 1 \leq i \leq \mathrm{n}\right\}$ be vertex set. Let $\mathrm{V}\left(K_{2}+{ }_{\mathrm{n}} K_{2}\right)=\left\{\mathrm{uv}, u u_{i}, v v_{i,} u_{i} v_{i}: 1 \leq i \leq \mathrm{n}\right\}$ be edge set. Then $\left.d^{D}{ }_{\left(\mathrm{u}^{\prime}\right.} v_{i}\right)=\mathrm{n}+7,1 \leq i \leq_{\mathrm{n} \text { and }} d^{D}(\mathrm{u}, \mathrm{v})=$ $2 \mathrm{n}+3, d^{D}\left(u, u_{i}\right)=\mathrm{n}+4, d^{D}\left(\mathrm{u}^{\prime}, u_{i+1}\right)=\mathrm{n}+7, d^{D}{ }_{\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)}$ $=5,1 \leq i \leq{ }_{\mathrm{n}} d^{D}\left(v_{1}, u_{n}\right)=\mathrm{n}+10, \quad, d^{D}\left(v, u_{i}\right)=\mathrm{n}+7$ So $\operatorname{diam}^{D}\left(K_{2}+{ }^{(} K_{2}\right)=2 \mathrm{n}+3$.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& \\
&(u)
\end{aligned}<_{\mathrm{f}(v)}<_{\mathrm{f}\left(u_{1}\right) \ll_{\mathrm{f}}\left(u_{2}\right) \ll_{\mathrm{f}}\left(u_{3}\right)<\ldots<} \\
& \left.\mathrm{f}\left(u_{n}\right) \ll_{\mathrm{f}\left(v_{1}\right)} \ll_{\mathrm{f}\left(v_{2}\right)}\right)<\ldots<_{\mathrm{f}\left(v_{n}\right)} .
\end{aligned}
$$

The radio D-distance condition becomes

$$
\begin{aligned}
& d_{(\mathrm{u}, \mathrm{v})+}^{D}|f(u)-f(v)| \geq_{2 \mathrm{n}+4} \\
& d_{\left(\mathrm{v}, \mathrm{u}_{1}\right)+}\left|f(v)-f\left(u_{1}\right)\right| \geq_{2 \mathrm{n}+4}
\end{aligned}
$$

But, $d^{D}{ }_{(}\left(u, u_{1)+}\left|f(u)-f\left(u_{1}\right)\right| \geq 2 n+4\right.$,
So, $f\left(u_{1}\right)=\max \{\mathrm{n}-1, \mathrm{n}+1\}=\mathrm{n}+1, f\left(u_{1}\right)=\mathrm{n}+1$. $d^{D}\left(u_{1}, u_{2}\right)+\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right| \geq 2 \mathrm{n}+4 d^{D}\left(u, u_{2}\right)+$ $\left|f(u)-f\left(u_{2}\right)\right| \geq 2 n+4$,
$\mathrm{f}\left(u_{i}\right)=\mathrm{in}-(3 \mathrm{i}-4), 1 \leq i \leq \mathrm{n} . d^{D}\left(u_{n,}, v_{1}\right)+$ $\left|f\left(u_{n}\right)-f\left(v_{1}\right)\right| \geq 2 n+4$,

$$
\begin{aligned}
& \text { But, } d^{D}\left(v, v_{1)+}\left|f(v)-f\left(v_{1}\right)\right| \geq_{2 n+4}\right. \\
& \text { And } d^{D}\left(u_{1}, v_{1}\right)+\left|f\left(u_{1}\right)-f\left(v_{1}\right)\right| \geq_{2 n+4}
\end{aligned}
$$

$$
\mathrm{f}\left(v_{i}\right)=\mathrm{n}^{2}+(\mathrm{i}-3) \mathrm{n}-3 \mathrm{i}+1,1 \leq i \leq{ }_{\mathrm{n}} .
$$

Therefore, $\mathrm{rn}^{\mathrm{D}}\left(K_{2}+\mathrm{n}^{2}\right)=2 \mathrm{n}^{2}-6 \mathrm{n}+1, \mathrm{n} \geq 5$.

Theorem 2.11

The radio D - distance number of splitting of a bistar graph $\mathrm{S}^{\prime}\left(B_{n, n}\right)$ is

$$
\operatorname{mn}^{\mathrm{D}}\left(\mathrm { S } ^ { \prime } \left(B_{n, n)}=6 n^{2}+16 \mathrm{n}+18, \mathrm{n} \geq 2 .\right.\right.
$$

Proof

Let $\mathrm{V}\left(\mathrm{S}^{\prime}\left(B_{n, n)}\right)=\left\{u_{i,} v_{i}, u_{i,}^{\prime} v_{i}^{\prime}, \mathrm{u}, v, u^{\prime}, v^{\prime}\right.\right.$, $1 \leq i \leq \mathrm{n}\}$ and $\mathrm{E}\left(\mathrm{S}^{\prime}\left(B_{n, n)}\right)=\left\{u_{i} u^{\prime}, u^{\prime} v, u_{i} u, u u_{i}^{\prime}\right.\right.$, $u v^{\prime}, u v, v v_{i}^{\prime} v u_{i}, v_{i} v^{\prime}, 1 \leq i \leq{ }_{\mathrm{n}\}}$. Then $d^{D}\left(u_{i}^{\prime}, u^{\prime}\right)=$ $3 \mathrm{n}+9,1 \leq i \leq{ }_{\mathrm{n}}$,
$d^{D}\left(u_{i}^{\prime}, v_{i}\right)=3 \mathrm{n}+9,1 \leq i \leq \mathrm{n}, d^{D}\left(u_{i,}, v_{i}\right)=3 \mathrm{n}+10$, ${ }_{1} \leq i \leq{ }_{\mathrm{n},} d^{D}\left(v_{i}, v_{j}\right)=\mathrm{n}+7,1 \leq i, j \leq{ }_{\mathrm{n}}$,
$\left.d^{D}{ }_{\left(v_{i}^{\prime}, v\right.}\right)=2 \mathrm{n}+4,1 \leq i \leq{ }_{\mathrm{n},} d^{D}\left(\mathrm{v}^{\prime} v^{\prime}\right)=3 \mathrm{n}+7$, $d^{D}\left(v_{i,} v_{i}^{t}\right)=2 \mathrm{n}+7,1 \leq i \leq \mathrm{n}$,

$$
d^{D}\left(v_{i}^{\prime}, v_{j)}^{\prime}=2 \mathrm{n}+6,1 \leq i, j \leq \mathrm{n}, d^{D}\left(v^{\prime}, u\right)=3 \mathrm{n}+4 .\right.
$$

Let, $\mathrm{f}\left(u_{1}\right)<{ }_{\mathrm{f}\left(v_{1}\right)}<\mathrm{f}_{\mathrm{f}}\left(v_{2}\right)<\ldots<_{\mathrm{f}\left(v_{n}\right)}<{ }_{\mathrm{f}}\left(v_{1}^{\prime}\right)<$ $\mathrm{f}\left(v_{2}^{\prime}\right)<\ldots<_{\mathrm{f}\left(v_{n}^{\prime}\right)}<{ }_{\mathrm{f}(v)}<_{\mathrm{f}\left(v^{\prime}\right)}<$
$\mathrm{f}(u)<{ }_{\mathrm{f}}\left(u_{1}^{\prime}\right)<{ }_{\mathrm{f}}\left(u_{2}^{\prime}\right)<\ldots<_{\mathrm{f}}\left(u_{n}^{\prime}\right)<{ }_{\mathrm{f}}\left(u^{\prime}\right)<$ $\mathrm{f}\left(u_{2}\right)<{ }_{\mathrm{f}\left(u_{3}\right)}<_{\mathrm{f}\left(u_{n}\right)}$.

The radio D-distance condition becomes
$\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})| \geq \operatorname{diam}_{\left(\mathrm{S}^{\prime}\left(B_{n, n}\right)\right)}+1$. Now, $d^{D}\left(u_{1}, v_{1}\right)+\left|f\left(u_{1}\right)-f\left(v_{1}\right)\right|_{\geq 3 n+11} d^{D}\left(v_{1}, v_{2}\right)+$ $\left|f\left(v_{1}\right)-f\left(v_{2}\right)\right|_{\geq 3 \mathrm{n}+1}$,

$$
\begin{aligned}
& f\left(v_{i}\right)=2(\mathrm{i}-1) \mathrm{n}+4(\mathrm{i}-1)+2,2 \leq i \leq \mathrm{n} \\
& d^{D}\left(v_{n}, v_{1}^{\prime}\right)+\left|f\left(v_{n}\right)-f\left(v_{1}^{\prime}\right)\right|_{\geq 3 \mathrm{n}+11} \\
& d^{D}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)+\left|f\left(v_{1}^{\prime}\right)-f\left(v_{2}^{\prime}\right)\right|_{\geq 3 \mathrm{n}+11}
\end{aligned}
$$

$f\left(v_{i}^{\prime}\right)=2^{n^{2}}+(\mathrm{i}+2) \mathrm{n}+5 \mathrm{i}-3,1 \leq \mathrm{i} \leq \mathrm{n}$.
$d^{D}\left(v_{n}^{\prime}, v\right)+\left|f\left(v_{n}^{\prime}\right)-f(v)\right|_{\geq 3 n+11}$,
$d^{D}\left(v, v^{t}\right)+\left|f(v)-f\left(v^{\prime}\right)\right|_{\geq 3 \mathrm{n}+11}$
$d^{D}\left(v^{\prime}, u_{)}+\left|f\left(v^{\prime}\right)-f(u)\right|_{\geq 3 n+11,}\right.$
$d^{D}\left(u, u_{1}^{\prime}\right)+\left|f(u)-f\left(u_{1}^{\prime}\right)\right|_{\geq 3 n+11}$,
$d^{D}\left(u_{1}^{\prime}, u_{2}^{\prime}\right)+\left|f\left(u_{1}^{\prime}\right)-f\left(u_{2}^{\prime}\right)\right|_{\geq 3 \mathrm{n}+11}$
$f\left(u_{i}^{\prime}\right)=3^{n^{2}}+(\mathrm{i}+8) \mathrm{n}+5 \mathrm{i}+17,1 \leq \mathrm{i} \leq \mathrm{n}$.
$d^{D}\left(u_{n,}^{\prime} u^{\prime}\right)+\left|f\left(u_{n}^{\prime}\right)-f\left(u^{\prime}\right)\right|_{\geq 3 \mathrm{n}+11}$,
$d^{D}\left(u^{\prime}, u_{2}\right)+\left|f\left(u^{\prime}\right)-f\left(u_{2}\right)\right| \geq 3 \mathrm{n}+11$
$d^{D}\left(u_{2}, u_{3}\right)+\left|f\left(u_{2}\right)-f\left(u_{3}\right)\right| \geq 3 \mathrm{n}+11$
$f\left(u_{i}\right)=4^{n^{2}}+(2 i+11) n+4 i+18,1 \leq i \leq n$.
Therefore, $r n^{D}\left(S^{\prime}\left(B_{n, n}\right)\right)=6 \mathrm{n}^{2}+15 \mathrm{n}+18, \mathrm{n} \geq 2$.

Theorem 2.12

The radio D-distance number of triangular snake $T S_{n}$ is $r n^{D}\left(T S_{n}\right)=10^{n^{2}}-47 n+60$

Proof

Let $V\left(T S_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n,}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ and $E\left(T S_{n}\right)=\left\{v_{i} u_{i}, u_{i} v_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq \mathrm{n}-1\right\}$. Then, $d^{D}\left(v_{1}, v_{n)}=d^{D}\left(v_{1}, u_{n-1)}=5 n-5, d^{D}\left(v_{1}, v_{n-1}\right)\right.\right.$ $=5 n-8$
$d^{D}\left(v_{1}, v_{2}\right)=d^{D}\left(v_{n-1}, v_{n}\right)=d^{D}\left(u_{i}, v_{i+1}\right)=7,:$ ${ }_{1} \leq i \leq{ }_{\mathrm{n}-2, d^{D}}\left(v_{1}, u_{1)}=d^{D}\left(v_{n}, u_{n-1}\right)=5\right.$

So, $\operatorname{diam}^{D}\left(T S_{n}\right)=5 n-5$. The radio D-distance condition becomes
$\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})| \geq \operatorname{diam}^{D}\left(T S_{n)}+1\right.$
Let, $\mathrm{f}\left(v_{1}\right)<{ }_{\mathrm{f}\left(v_{n}\right)} \mathrm{f}_{\mathrm{f}}\left(v_{2}\right)<{ }_{\mathrm{f}\left(v_{3}\right)}<$ $\left.\mathrm{f}\left(v_{n-1}\right)<{ }_{\mathrm{f}}\left(u_{1}\right)<{ }_{\mathrm{f}(} u_{2}\right)<\ldots{ }_{\mathrm{f}}\left(u_{n-1}\right)$.

Now,
$d^{D}\left(v_{1}, v_{n}\right)+\left|f\left(v_{1}\right)-f\left(v_{n}\right)\right| \geq_{5 n-4}$
$d^{D}\left(v_{n}, v_{2}\right)+\left|f\left(v_{n}\right)-f\left(v_{2}\right)\right| \geq_{5 n-4}$
But, $d^{D}\left(v_{1}, v_{2}\right)+\left|f\left(v_{1}\right)-f\left(v_{2}\right)\right| \geq_{5 \mathrm{n}-4}$
$d^{D}{ }_{\left(v_{2}, v_{3}\right)+}\left|f\left(v_{2}\right)-f\left(v_{3}\right)\right| \geq_{5 n-4}$
$f\left(v_{i}\right)=5(\mathrm{i}-1) \mathrm{n}-13 \mathrm{i}+16,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\left.d^{D}{ }_{\left(v_{n-1},\right.}, u_{1}\right)+\left|f\left(v_{n-1}\right)-f\left(u_{1}\right)\right| \geq_{5 n-4}$
But, $d^{D}\left(v_{1}, u_{1}\right)+\left|f\left(v_{1}\right)-f\left(u_{1}\right)\right| \geq_{5 n-4}$

Also, $d^{D}\left(v_{2}, u_{1)}+\left|f\left(v_{2}\right)-f\left(u_{1}\right)\right| \geq 5 \mathrm{n}-4\right.$
So, $f\left(u_{1}\right)=\max \left\{5^{n^{2}}-23 n+32,5 n-8,10 n-21\right\}$
$d^{D}\left(u_{1}, u_{2}\right)+\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right| \geq_{5 n-4}$
$d^{D}\left(u_{2}, u_{3}\right)+\left|f\left(u_{2}\right)-f\left(u_{3}\right)\right| \geq 5 n-4$
$f\left(u_{i}\right)={ }_{5} n^{2}-(5 i-28) n-14 i+46,1 \leq \mathrm{i} \leq n-1$.
Therefore,
$r n^{D} T S_{n)}=10 \mathrm{n}^{2}-47 \mathrm{n}+60, \mathrm{n} \geq 4$.

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs,Addition- Wesley, Redwood City, CA, 1990.
[2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatories and Its Applications, vol. 33,pp. 77-85, 2001.
[3] G. Chartrand, D. Erwinn, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 4357(2005).
[4] C. Fernandaz, A.Flores, M.Tomova, and C.Wyels, " The Radio Number of Gear graphs," arXiv:0809. 2623, September 15, (2008).
[5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J.Combin. 19(2012)"£Ds6.
[6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497- 1514.
[7] F.Harary, Graph Theory, Addition Wesley,New Delhi(1969).
[8] R. Khennoufa and O. Togni, "The Radio Antipodal and Radio Numbers of the Hypercube", accepted in 2008 publication in ArsCombinatoria.
[9] D. Liu, X. Zhu, "Radio number for trees", Discrete Math.308(7)(2008) 1153-1164.
[10] D. Liu,. X.Zhu, Multilevel distance labeling for paths and cycles, SIAM J. Discrete Math. 19(3)(2005) 610-621.
[11] P. Murtinez, J. OrtiZ, M. Tomova, and C. Wyles, "Radio Numbers For Generalized Prism Graphs, Kodai Math. J. , 22, 131-139(1999).
[12] T. Nicholas, K. John Bosco, Radio D-distance Number of some graphs,IJESR, vol. 5 Issue 2, Feb. 2017.
[13] T. Nicholas, K. John Bosco, M. Antony, V. Viola, Radio mean Ddistance Number of Banana Tree, Thorn Star and Cone Graph ,IJARIIT, Vol. 5 Issue 6, Feb.2017, ISSN:2456-132X
[14] T. Nicholas, K. John Bosco, M. Antony, V. Viola, On Radio Mean Ddistance Number of Degree Splitting Graphs, IJARSET, Vol. 4 Issue 12, Dec 2017, ISSN: 2350-0328.
[15] T. Nicholas, K. John Bosco, V. Viola, On Radio mean D-distance Number family of Snake Graph, IJIRS, Vol. 8 Issue VI, June 2018, ISSN:2319-9725.
[16] T. Nicholas, K. John Bosco, V. Viola, On Radio Mean D-distance Number of Graph Obtained from Graph Operation IJMTT, Vol. 58 Issue 2, June 2018, ISSN: 2231-5373.
[17] M.T.Rahim,I.Tomescu,On Multilevel distance labeling of Helm Graphs, accepted for publication in ArsCombinatoria.
[18] Reddy Babu,D., Varma, P.L.N., "D-distance in graphs", Golden Research Thoughts, 2(2013),53-58.
[19] Reddy Babu,D., Varma, P.L.N., "Average D-distance Between Vertices of a graph", Italian Journal of pure and applied mathematics-N. 33; 2014(293;298).
[20] Reddy Babu,D., Varma, P.L.N., "Average D-distance Between Edges of a graph" India Journal of Science and Technology, Vol 8(2), 152-156, January 2015.
[21] M.M. Rivera, M.Tomova, C. Wyels, and A.Yeager, "The Radio Number of C_n \times C_n, resubmitted to ArsCombinatoria, 2009.

