
Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 10

CALCULATING MCCABE'S CYCLOMATIC

COMPLEXITY METRIC AND ITS EFFECT ON

THE QUALITY ASPECTS OF SOFTWARE

Marwa Najm Abd Jader
Software Engineering Department

College of Computer Sciences and Mathematics

Mosul, Iraq

Dr. Riyadh Zaghlool Mahmood

Software Engineering Department

College of Computer Sciences and Mathematics

Mosul, Iraq

Abstract—Most software developers aims at having a high-

quality software that is easily maintainable, easily

understandable, well structured, reliable, etc. Measuring

software complexity is quite important as high complexity has

been identified to be the reason behind difficult understanding

and reading and problematic changes in the future. Added to

that, it has been the source of defects and poor software quality

in the present time. Accordingly, high complexity entails the

presence of serious faults in the software and duly higher costs to

maintain and fix. Software complexity metrics determine the

improvement of software quality and project controllability to a

large extent. In this work, we have calculated the software

complexity metric (McCabe's Cyclomatic Complexity (CC)).

Simplifying testing by guaranteeing the execution of at least one

statement during testing. That is to say, the number of test cases

will be equal to the Cyclomatic Complexity of the program. Such

information is important for testing. Identifying reliability risk

level, testability level; and cost/effort so as to maintain

(maintenance risk level) by depending on Cyclomatic Complexity

CC. Also, identifying Bad fix probability of an error that is

unintentionally set into a program at the time of fixing a previous

error, or while maintaining a code. As the complexity of the

software increases, the probability to introduce new errors also

increases. Finally, we have explained the results which are under

discussion by specific tables and figures to illustrate the value

and information of the metric in detail.

Keywords— Software Complexity Metrics, CC Metric,

Cyclomatic Complexity, McCabe's Cyclomatic Complexity, Quality

Attributes, CC number, Software Quality

I. INTRODUCTION

The most jaded software developers unanimously agree
upon the importance of the high-quality software. Broadly
speaking, software quality is defined as an effective software
process that applied in a way that brings about a useful product
of a measurable value to both producers and users [1]. A useful
product provides the final users with desirable contents,
functions, and features in the form of assets that are delivered
in a reliable and error-free way [1]. Complexity appears
everywhere in the life cycle of the software represented by the
requirements, analysis, design, and implementation. It stands
for an unfavourable property that renders the software quite
hard to read and understand, and accordingly harder to change.
It is also believed to be the main source of defects in the
software. This has resulted in the belief that software
complexity is just the opposite of its good quality represented
by its easy maintenance and understanding, well-designed

structure, reliability, etc. [2]. The measurement of software
complexity and high complexity software is an important issue
since understanding and reading it are quite difficult and its due
change in the future become quite problematic. A main reason
behind the defects are complex software. Accordingly, poor
software quality is said to be due to software complexity [3]. A
software metric is defined as a degree standard measurement of
which a software system or process has some features [4]. On
measuring, software complexity is a main part of the software
metrics that focus on direct measurement of the qualities just
contrary to the indirect software measures such as project
milestone status and reported system failures. Many software
complexity measures are available. They, range from the
simple measures such as Source Lines of Code, to the esoteric
represented by a number of variable definition/usage
associations [5]. Well-known software metrics form the basis
for Software complexity. They may minimize the time spent
and cost estimation during the testing phase of the software
development life cycle (SDLC). This can only be used after
program coding is done. Improving software quality forms a
quantitative measure of the source code quality [6]. The effort
needed to analyze and describe the requirements, design, code,
test and debugging of the system comes under the strong effect
of complexity during the development phases of software.
Also, in the maintenance phase, the difficulty in error
correction and the required effort to change different software
module are specified by complexity [7]. Complexity metrics
form a good source of help in the intricate judgments about the
strategy and planning of projects. Added to that, complexity
information can help in [8]: (1) adjusting programming
estimates, and duly schedules and costs, (2) deciding where
more thorough analysis is necessary, (3) deciding which
resources are most appropriate for a task, (4) developing more
appropriate and detailed testing plans, (5) advising the business
of additional project risks, and (6) deciding on alternative
design plans to minimize changes to the highly complex code.
Similarly, preparing both project and testing plans are derived
from understanding the complexity metrics of a program to be
tested [8]. LOC, Halstead’s measure of complexity and
cyclomatic complexity are three software complexity metrics
of main use. Yet there are problems concerning the use of LOC
and Halstead’s measure complexity metric, and they can be
overcome by the strongest metric cyclomatic complexity
metric was introduced, three methods are used to measure
cyclomatic complexity [3].

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 11

II. LITERATURE SURVEY

This study analyzes the effectiveness of complexity in
security, maintainability and errors prediction. It puts forward
some various software metrics to measure the complexity of a
system during the design phase, and highlight the cyclomatic
complexity metric introduced by McCabe and studied
extensively by most researchers. It also proposes improving
cyclomatic complexity metric to measure both the intra-
modular and the inter-modular complexity of a system [2].

This research attends to some more efficient software
complexity metrics, namely Cyclomatic complexity, Line of
code and Hallstead complexity metric and sheds light on their
impacts on software quality. It also discusses and analyzes the
correlation between these metrics. Finally, it demonstrates their
relation with the number of errors through the use of a real
dataset as a case study [9].

In this study, a framework or an algorithm is suggested to
measure interaction between object classes based on all the
unique external class references. Also, an approach is proposed
to improve the concept of cyclomatic complexity [3].

This study investigates acquisition of knowledge on the
basis of path testing by considering a sample of code and the
implementation of path testing stated with its merits and
demerits [10].

III. SOFTWARE COMPLEXITY MATRICS

Many different metrics for complexity have been proposed.
The most important and popular ones have been chosen due to
their noticeable impact on the project design and code quality,
and as follows: Line of Code (LOC), Halstead Complexity
(HC) and Cyclomatic Complexity (CC) [9].

A. Line of Code (LOC)

Generally speaking, LOC is computed when the lines of a
program codes are counted. It is a common means for the
evaluation of the software size, yet for measuring software
complexity, it has been an inadequate indication [9].

For measuring a program size through counting the number
of the lines of the source code, the oldest and the simplest
metric Source line of code (SLOC) is most widely used to
measure the size of a program by counting the number of lines
of the source code. It was basically developed for the
estimation of a project’s man-hours. Every line including
comments and blank lines is counted by LOC. Kilo Lines of
Code (KLOC) is LOC divided by 1000. The effective line of
code, except parenthesis, blanks and comments, is estimated by
Effective Lines of Code (ELOC) [2].

For programming language, LOC is counted speedily and is
easy for understanding [9]. Immediately after the calculation of
the LOC, the following attributes can be measured [2].

 Productivity = LOC/Person months

 Quality = Defects/LOC

 Cost = $/LOC

The advantages of the LOC metric are as follows.

LOC is mostly used and measured after project completion.
Its language independent that has been proved as a useful
predicator of program effort [3].

The disadvantages of the LOC metric are as follows.

1) No counting of LOC is possible unless the application

is done, and its counting is always performed at the

completion of the life cycle. In other words, it is difficult and

impossible to have a counting of LOC at a stage of early life

cycle [3].

2) A main feature of this metric is that it makes no

distinction between LOC complexities. For instance, the code

“i=1” does not differ from the code “i= (++x + max (a,b)) /

power (c,d)”. As a matter of fact, the second code is more

complex than the first one, yet LOC metric counts the number

of lines at the time nothing else is taken into consideration [9].

3) Both complexity caused by the decisional statements or

conditional statements, if present in the program, and data

complexity are ignored by LOC. According, in 1977, a new

metric Maurice Halstead, also known as Halstead software

science or as Halstead metric, was introduced to overcome

such difficulty [3].

B. Halstead Complexity (HC)

Maurice Halstead introduced a set of metrics, known as
Halstead software science or Halstead metrics, in 1977.He was
the pioneer in writing a scientific formulation of software
metrics. His objective was to provide an alternative
measurement for counting of LOC as a measure of both size
and complexity. His measurement has been used as a predictive
measure of the error of a program [2]. It computes the
difficulty of a program by counting both the “operators” and
the “operands” [11].

Halstead views a computer program as the application of an
algorithm in the form of a collection of tokens that are liable to
classification into either operators or operands. That is to say, a
program is viewed as a chain of operators with their associated
operands. All Halstead’s metrics work as functions for the
counting of these tokens [12].

These tokens are basically defined as either operators or
operands. The following indices for the bases for Halstead’s
metrics [2].

 n1 - distinct number of operators in a program

 n2 - distinct number of operands in a program

 N1 - total number of operators in a program

 N2 - total number of operands in a program

void sort(int *a, int n) {

int i, j, t;

if (n < 2)return;

for (i=0 ; i<n-1; i++) {

for (j=i+1 ; j<n ; j++) {

if (a[i] > a[j]) {

t = a[i];

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 12

a[i] = a[j];

a[j] = t;

}

}

}

}

Now, the operators and operands can be identified from this
C program (HALSTEAD VOLUME EXAMPLE) [13].

Fig. 1. Calculation of operators and operands of the program [13].

Then: HV = 81 * log2 (25) = 81 * 4.64385618977≈376
[13].

Halstead puts forward the definition of some software
attributes based on the notions of operators and operands [2].

1) Program vocabulary:Rrepresents counting the number

of both unique operators and operands as: n =n1+n2.

2) Program length: Stands for counting of total number of

both operators and operands: N=N1+N2.

3) Program Volume: Represents a further measure of

program size. It is defined by V=N*log2(n). The Program

Volume (HV) of the preceding C program is.

HV = 81 * log2 (25) = 81 * 4.64385618977≈376 [13]

4) Difficulty Level: The relation between this metric and

the number of distinct operators (n1) in the program is

proportional. It is based on the total number of operands (N2)

and the number of distinct operands (n2). If the same operands

are used several times in the program, there will be more

chances for errors to occur.

D= (n1/2)*(N2/n2) [2].

The Difficulty of the previous C program is.

Example C program: D = (17/2) * (31/8) ≈ 36 [14].

5) Program Level: Is the inverse of the level of difficulty.

A low-level program is more subject to errors compared to a

high-level program. L=1/D.

6) Programming Effort: This is limited to the mental

activity that is needed to change an existing algorithm into an

actual implementation in a programming language.

E =V*D

7) Programming Time: Can be taken from the formula:

T=E/18 [2].

8) Bugs delivered: (E ^ (2/3)) / 3000 [14]..

The advantages of the Halstead metric are as follows.

 The overall quality of a program is measured by
Halstead’s metric.

 Its programming does not require deep knowledge and
its calculation is quite simple.

 The rate of errors and effort can also be measured by its
means.

 It is used to calculate the complexity from the data flow
of software [3].

The disadvantages of the Halstead metric are as follows

 No distinction is there in the computation of some
operators and operands of the codes and some branches
and jumps. Definitely, there is more complexity in the
computations of the branches and jumps [9].

 Halstead’s metric method cannot measure inheritance
and Interaction between modules [3].

 Halstead’s metric method also ignores the complexity
from the decision statements like if, loops etc. [3].

Yet these metrics (LOC, Halstead’s Measures of
Complexity, etc..) have some problems as illustrated through
previously stated disadvantages; a point that has made the
concept of cyclomatic complexity become more common [3].

C. Cyclomatic Complexity (CC metric)

Before the introduction of the Cyclomatic complexity
method, physical size, i.e. LOC metric was not considered
adequate due to the existence of 40-50 lines of code comprising
different consecutive conditional statements such as “while”,
“if”. There might be a program code that has million distinct
control paths, yet only a small proportion of them would
probably be subject to testing [3].

In an attempt to estimate software program maintenance
cost in the future, reference [15] made use of three software
complexity measures, namely McCabe’s Cyclomatic
Complexity, Halstead’s E and “the length as measured by the
number of statements”. They point out that the maintenance
cost of the program is three times the cost of the initial
development. As such, software managers view this
measurement as, reference [15].

McCabe’s Cyclomatic Complexity is a mathematical
technique that both provides a quantitative basis for
modularisation and allows the identification of software
modules difficult to test or maintain. The LOC is rejected due
to the fact that no obvious relationship exists between length
and module complexity, and hence McCabe is viewed as a
complexity measurement that examines the number of control
paths through a module, reference [15].

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 13

Cyclomatic complexity is a software metric (measurement),
developed by Thomas J. McCabe, Sr. in 1976, by means of
which the complexity of a program is identified.It
quantitatively measures the number of linearly independent
paths through a program's source code [16].

Complexity measurement is defined by McCabe (1976)
based on a graph theory by which a number of paths through a
program are measured and controlled. Through the
presentation of examples in FORTRAN programs, McCabe
stated that complexity has nothing to do with physical size; it
only depends on a program’s decision structure”, reference
[15].

Cyclomatic complexity metric has always been correlated
with certain qualities of the software represented by reusability,
maintainability, security and prediction of faults. It works as an
efficient guide for the development of test cases [2].

D. Calculating Cyclomatic Complexity (CC)

McCabe’s Cyclomatic number which is used to study
program complexity may be applied. Three methods are
recommended for the calculation of the Cyclomatic
Complexity number from a flow Diagram [3].

 Number of edges – number of nodes + 2

 Number of binary decisions + 1

 Number of closed regions + 1.

In the following pages, light will be shed on the three
methods to calculate the number of Cyclomatic Complexity.

E. First Method

The control flow graph of the program plays a crucial role
in the definition of the Cyclomatic Complexity of a structured
program. It is a directed graph that contains the basic blocks of
the program and has an edge between two basic blocks in case
the control may pass from the first to the second. Accordingly,
the complexity M is defined as [16]:

M = E − N + 2P,

Where

E = the number of edges of the graph.

N = the number of nodes of the graph.

P = the number of connected components.

In the case of a single program (or subroutine or method), P
always equals 1. The following is a simpler formula for a
single subroutine:

M = E − N + 2.

Cyclomatic complexity may simultaneously be applied to a
number of programs or subprograms (e.g. to all the methods in
a class). In such a case, Since each subprogram will appear as a
disconnected subset of the graph, P will be equal to the number
of programs [16].

This program is mainly applied to calculate any number’s
power [3].

1. Begin

2. int A, B, power;

3. float C;

4. input(A,B);

5. if (B < 0)

6. power = -B;

7. else

8. power = B;

9. C = 1;

10.while (power!=0) {

11.C=C*A;

12.power = power -1;

13.}

14.If (B<0)

15.C = 1/C;

16.Output(C);

17.End

This is the program for a “raised to power B”.

The flow graph stands for the flow of source code and 9
nodes and 13 edges exist in the control flow graph (Fig. 2).

From the graph, the number of edges and nodes is
calculated and set in the formula and as follow:

Cyclomatic complexity number = #edges - #nodes +2P.

Fig. 2. The Control Flow Graph.

From the above program #edges =13, #nodes = 9. Hence,
the Cyclomatic complexity number =13-11+2 = 4.

Four independent paths exist in this graph. The Cyclomatic
complexity number equals the number of independent paths in
the graph [3].

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 14

The number of test cases will equal that of the Cyclomatic
complexity of the program [16].

F. The Second Method

Here, McCabe Cyclomatic Complexity is calculated by
determining the number of decision statements caused by the
conditional statements in a program + one.

Cyclomatic Complexity = number of decision statements +
1 [3].

This method will be adopted in our proposed system.

Five basic rules can be used for the calculation of CC.

 Calculating the number of “if/then”, “else if”, yet no
counting of the “else statements” in the program is
made.

 Finding any select (or switch) statements, and counting
the number of the cases within them. Then, finding the
total of the cases in all the select statements combined
together. No counting of the default or "else" case is
made.

 Calculating all the loops in the program.

 Counting all the try/catch statements [17].

 Counting the conditional operator &&, || operator and
ternary operators like? from the expression [3]..

Fig. 3. Decision Control Graph [18].

Now, one is added to the numbers from the previous step
numbers. That will be the number of final cyclomatic
complexity of the program. Accordingly, in the program stated
above for calculating the power of any number), the number of
decisional statements is three: two “if” statements and one
“while” statement. Then, one is added to the final cyclomatic
complexity number and the final cyclomatic complexity
number for the above program according to the second method
is = 3+1=4 [3].

Fig. 4. The Different Types of Flow Graphs [19].

G. The Third Method

Cyclomatic complexity = Number of enclosed areas + 1.

Accordingly, the control flow diagram is first drawn
followed by the calculation of the number of closed regions in
the control flow diagram. The number of closed regions is 4
here.

Then, cyclomatic complexity is= 3+1=4 (Fig. 5).

It is worthy to note that from the three preceding methods,
the same Cyclomatic complexity number is obtained [3]

Fig. 5. Regions calculation from the flow graph [3].

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 15

IV. THE SIGNIFICANCE OF THE MCCABE’S CYCLOMATIC

COMPLEXITY NUMBER

As stated in the following sections, the number of McCabe
(CC) noticeably influences the quality of the product
(software).

A. The Correlation between CC number and Reliability Risk

TABLE I. THE RELATIONSHIP BETWEEN CYCLOMATIC COMPLEXITY &

RELIABILITY RISK [20]

 CC number Reliability risk

1 – 10

11 - 20

21 – 50

>50

Simple procedure, little risk

More Complex, moderate risk

Complex , high risk

Untestable, VERY HIGH RISK

Software Reliability is defined as the probability that a
software operation will not fail for a specified duration of time
within a specified environment [21].

The Cyclomatic complexity number should range from 1 to
10. Only by that time, software is considered as risk free. If the
range is 10-20, it would be considered as a target of moderate
risk. A 30-40 range makes the module highly risky, and a range
that exceeds 40 exempts it from the candidacy for testing.
Based upon some data, it has been proved that the higher the
cyclomatic complexity number will be, the lower the quality of
software will be, table(I) [3].

The Software Engineering Institute at Carnegie Mellon
University provides threshold values concerning the CC metric,
table(I). Based on the resulted complexity, a risk associated
with the specific procedure's complexity comes into existence.
As such, appropriate measures should be taken to reduce the
complexity and duly to avoid future maintenance [22].

Based on certain facts, if programs with McCabe
Cyclomatic complexity are greater than 10, there will be a high
probability of having errors and defects and it will be very
difficult to understand. As a result, more numbers of test cases
will be required to execute the paths in the program. In other
words, the higher the Cyclomatic number is, the higher will be
the error rate, and the more required will be the code
maintenance or refactoring [3].Also, the greater the complexity
(by some measures), the more fault the software will have and
the higher the cost will be [23].

B. The Correlation between High CC and Failure

In spite of the intuitive appeal concerning the correlation
between high aggregated CC and higher-than-expected
maintenance problems, several main factors are expected to
have a role to play (figure 6). For instance, it is shown that the
CC metric has been strongly correlates with the method size.
So, in case a large system has many methods with high CC, the
methods are probably the methods that are longer. This may
duly indicate an inability by the programmers to form coherent
abstractions and build robust, reusable units of code [24].

Fig. 6. Two Comparable Explanations for Correlation between high CC and

Failure [24].

Higher software complexity results in the software failure.
In this respect, two possible cases are:

 An incompetent programmer may write a program with
large methods and that results in failure.

 A programmer may write some methods including
many jump and branch statements and many control
paths, all of which result in failure [3].

C. The CC number and Its Corresponding Meaning

High complexity, more bugs and security flaws [25]. Table
(II) presents an overview of the complexity number and the
corresponding meaning of v (G).

TABLE II. THE COMPLEXITY NUMBER AND ITS CORRESPONDING

MEANING [25]

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 16

D. The Correlation between CC number and Bad Fix

Probability

"Bad Fix Probability" refers to the probability of an error
that is accidentally inserted into a program at the time of fixing
an error. With the complexity reaching high values, new errors
are quite likely due to the changes in the program [26].

TABLE III. “EMPIRICAL VALUES SEI” (THE CORRELATION BETWEEN CC

NUMBER AND BAD FIX PROBABILITY) [27].

E. The Correlation between Software Complexity and

Software Maintainability and Cost

Software complexity attends to the difficulty of
comprehending and working with a program [6]. According to
IEEE, software complexity is defined as “the degree to which a
system or component has a design or implementation that is
difficult to understand and verify”. While “Maintainability”
refers to the ease of maintaining a product so as to [28].

 Isolate defects or their causes,

 Correct defects or their causes,

 Repair or replace faulty or worn-out components
without replacing the parts that are still working,

 Prevent unexpected breakdowns,

 Maximize a product's useful life,

 Maximize efficiency, reliability, and safety,

 Meet new requirements,

 Make future maintenance easier, and

 Cope with a changing environment

Fig. 7 shows the dependencies.

Fig. 7. The Relationship between software complexity metrics and software

systems [6].

Complexity is a measure of understandability and the
lacking of understandability results in errors. A more complex
system may be harder to specify, to design, to implement, to
verify, to operate, to predict its behavior and risky to change
[29].

A large number of employees is required to maintain large
software systems and the high estimated costs of software
maintenance are good reasons behind the efforts exerted by
software managers to monitor and control complexity [29].

A direct relationship exists between software complexity
and maintenance costs. As a code lines increase, software
becomes more complex and the probability of more bugs
increases. In such a case, the cost of maintaining the software
also increases [29].

Algorithm of Calculation of the Complexity Metric

(McCabe Cyclomatic Complexity "CC")

The steps of this algorithm are as follows:

1) Loading Java file that belongs to the user by choosing

its specific track on the condition that the file to be loaded is

of Java extension only.

2) After loading Java file, a medial textual file of the

extension "txt" will be formed to be written on later, by using

(File and FileWriter) as follows.

File file= new File ("file.txt");

 FileWriter fileWriter= new FileWriter(file);

3) Reading the contents of Java file to be loaded and

treated by using a special function, we have removed all the

comments from the file and not counting them programmingly.

There are three types of comments in Java.

a) Single-Line Comments that start with // and are used

for one programming line.

b) Multi-Line Comments that start with /* and ends with

*/ to limit the number of the programming lines inside it.

c) Javadoc Comments that start with the symbol /** and

a number of * is vertically written until the symbol of the end

*/ is arrived at. Within these two symbols there is a set of

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 17

information that may be the name of the writer of code

(Author)…etc., in addition to illustrating information about

the code, the functions and the variables in the light of the

need for writing it so as to understand the code in a better way

in terms of clarification and management especially in the

complex codes, and are saved in the form of HTML document.

4) On reading and treating Java file, the contents of the

file that had been previously treated will be written on the

medial textual file (file.txt) that had been previously formed. In

other words, we would read one programing line, treat as far

as the comments are concerned and write them on the medial

file. The process goes on until we finish with all the contents

(lines) of Java file, and this step will be done as follows.

FileReader fr = new FileReader((Java file extention));

 BufferedReader br = new BufferedReader(fr);

 line = br.readLine();

 while (line != null)

// here, the contents of Java file will be treated by using a

special function, as we will remove all the comments from the
file and not counting them programmingly. Then, the contents
of the file that had been previously treated will be written on
the medial file (“file.txt”) that had been previously formed.//

//////////////write on textual file line by line///////////

 fileWriter.write(line);

 fileWriter.write("\n");

 fileWriter.flush();

 line = br.readLine();

 end while

5) Saving the medial textual file (“file.txt”), with its Java

file contents that had been previously treated in the same

package where Java file had been previously loaded.

6) After loading and opening Java file that belongs to the

user as we have previously explained, we will calculate the

metric CC as in the following steps.

7) At the beginning, an array of string will be formed. It is

named Keywords []. Inside it are put the Decisional

statements and operators and as follows.

String [] keywords = {"if", "while", "case", "for", "&&", "||",

"?", "catch"};

8) Reading from “file.txt” which is the medial text file that

has been formed and written on previously when opening and

loading Java file which includes all the contents of Java file

without comments. This step will be done as follows.

BufferedReader br = new BufferedReader(new

FileReader(file.toString()));

 line = br.readLine();

while (line != null)
 line = line.trim();

9) Making parse or analysis of each line in the medial

textual file (“file.txt”) so as to find out the Decisional

statements and required to calculate the metric "CC" by using

the SringTokenizer Class. This will be done by dividing the

string into tokens, i.e. the lines in the medial textual file will be

divided into tokens by depending on the delimiters or certain

identifiers to divide the lines according to the treatment

requirements.

StringTokenizer stTokenizer =new StringTokenizer(line, "(

{) } ; , .");

10) To look for the Decisional statements and operators,

_they are as follows.

a) If/then (don’t count “else”), all cases of switch

statement (don’t count default).

b) All loops (for, while, do-while, try/catch)..

c) Conditional operators (&& , || , ?: ternary

operator),_ in the textual file (“file.txt”), and as we have

previously mentioned by depending on the tokens we have

obtained by diving the line in the medial file and then putting

them in a string that is called words. Then compare the tokens

or words that have been obtained from the textual file with the

matrix of keywords [] that have been identified at the

beginning of the algorithm that includes Decisional statements

and operators. If the comparison is correct, the counter is

increased by 1 and as follows.

while (stTokenizer.hasMoreTokens())

words = stTokenizer.nextToken();

for (i = 0; i < keywords.length; i++)

if (keywords[i].equals (words))

counter++;

end if.

end for.

end while.

line = br.readLine();
 end the first while in the step(8)

11) Calculating the "CC" by means of summing the

counter of the Decision statements that have been found out

and calculated previously and adding 1 to them as the number

of decision statements represents the previous counter that has

been formed and increased according to the comparison. The

special rule for counting the CC is.
CC=number of decision statements +1 , and this step will

be done as follows: CC = counter + 1.

12) Demonstrating the value of the metric CC of the user

and the information concerning this metric such as.
Quality Attributes like:

a) Reliability risk level: Reliability is the probability of

failure-free software operation for a specified period of time in

a specified environment.

b) Testability level: The ease with which a computer

program can be tested.

c) Cost/effort to maintain: Maintenance is the

modification of a software product after delivery to correct

faults, to improve performance or other attributes.

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 18

Bad fix probability: the probability of an error
accidentally inserted into program while trying fix previous
error.

V. RESULTS AND DISCUSSION

The metric CC was tested on 2 examples or programmes
written in Java language. The results were then discussed. They
are illustrated in details in the form of figures and tables.

1) Sample1: “Example of String”: In this example, the

number of the entered words, letters, digits, uppercase letters

and lowercase letters of the string are entered is calculated

with a reversed calculation of this string. Figure (8) outlines

the source code specific to this example. We arrived at a set of

results. Table (IV) illustrates the results of this example in

detail.

package exampletest;

import java.util.Scanner;

public class ExampleOfstring {

public static void main(String[] args) {

int i, countcharacters = 0, countwords = 0, countdigits = 0,
upperCase = 0, lowerCase = 0, len = 0;

Scanner scanstr = new Scanner(System.in);

System.out.print("Enter your string: " + "\n");

String str = scanstr.nextLine();

char ch[] = new char[str.length()];

for (i = 0; i < str.length(); i++) {

 ch[i] = str.charAt(i);

if (((i > 0) && (ch[i] != ' ') && (ch[i - 1] == ' '))

 || ((ch[0] != ' ') && (i == 0))) {

 countwords++;//count words

 }

if (((ch[i] != ' '))) {

 countcharacters++;//count characters

 }

 }

for (i = 0, len = str.length(); i < len; i++) {

 if (Character.isDigit(str.charAt(i))) {

 countdigits++;//count digits

 }

 }

for (i = 0; i < str.length(); i++) {

 // Check for uppercase letters.

 if (Character.isUpperCase(str.charAt(i))) {

 upperCase++;

 }

 // Check for lowercase letters.

 if (Character.isLowerCase(str.charAt(i))) {

 lowerCase++;

 }

 }

 String stt = ("Your string has ");

System.out.println(stt + (countwords) + " words." + "\n");

System.out.println(stt + (countcharacters) + " characters."
+ "\n");

System.out.println(stt + (countdigits) + " digits." + "\n");

System.out.println(stt + (upperCase) + " uppercase letters"
+ " and " + lowerCase + " lowercase letters" + "\n");

String reverse = new StringBuffer(str).reverse().toString();

System.out.println("Your string before reverse:" + str +
"\n");

System.out.println("Your string after reverse:" + reverse +
"\n");

System.out.println("--
------------------------------" + "\n");

 }

}

Fig. 8. Source code of the Sample1. (Example of String)

With regard to the results in Table (IV), the metric CC is
calculated from the rule that is previously mentioned:

Cyclomatic Complexity=number of decision statements + 1

 We have also illustrated its effect on the quality attributes
such as: Reliability risk, Testability, Cost/effort to maintain
(maintenance) as they ratios are based on the value of this
metric (CC). We have also illustrated the Bad Fix Probability.
It also depends on the value of this metric. This ratio is adopted
as we have previously stated from certain resources and
according to certain tables and by depending the value of the
metric) CC .(

As for this example, CC value = 13, depending on the
decision statements and adding 1 to it. In this example, we
have (for ,if , && ,&& ,|| ,&& ,if ,for ,if ,for , if, if). They are
12 in number and we have added 1 so that CC becomes 13.
The value of Bad Fix Probability equals 10% based on the
value of the metric (CC).

TABLE IV. THE RESULTS OF THE SAMPLE1 (EXAMPLE OF STRING)

2) Sample2: “Simple Program of Cyclomatic Complexity

Examples”

Sample1 (Example of String (count letters, words,…..etc))

Cyclomatic

Complexit

y “CC”

metric

“CC”

numb

er

“Meaning of “CC” number

(Quality Attributes) Bad Fix

Probabil

ity
“Reliabili

ty risk”

“Testabilit

y”
Cost/Effo

rt to

maintain

13

More
complex,

moderate

risk

Medium Medium 10%

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 19

In this example, we have illustrated CC and focused on the
value of this metric.

We have tried in this example to put all the cases or rules of
the metric occurrence CC as we have dealt with it in detail in
the Algorithm for calculating this metric. We have put in this
example a set of functions where each function implies a
certain case or a certain rule such as:

(If statement, switch statements, while, for, try/catch
statements, conditional operator (&& and || operator and also
ternary operators like? :)).

The source code for this example is in figure (9). We
arrived at a set of results. Table (V) illustrates the results of this
example in detail.

package SimpleprogramCyclomaticexample;

import java.util.Scanner;

public class SimpleProgramCyclomaticExample {

///////////////example of While function/////////////////

public static void WhileFunction() {

 System.out.println("******While function to print numbers

from (1 to 10)******* ");

 int num = 1;

 System.out.print("The numbers from (1 to 10) are : ");

 while (num <= 10) {

 System.out.print(num + " ");

 num++;

 }

 System.out.println("\n" + "-------------------------------------

-----------------------------------");

 }

///////////////example of for loop function/////////////////

public static void ForloopFunction() {

 System.out.println("******For loop function to print the

names of animals that starting with letter 'B'******* ");

 String[] values = {"Cat", "Bear", "Dog", "Bird", "Bee",

"Butterfly"};

 System.out.print("The names of animals that starting with

letter 'B' : ");

 // Loop over all Strings.

 for (String value : values) {

 // Skip Strings starting with letter b.

 if (value.startsWith("B")) {

 System.out.print(value + ", ");

 }

 }

 System.out.println("\n" + "-------------------------------------

----------------------------------");

 }

////////example of If statement and contains && And ||

//////////////

 public static void IfStatementAndOrFunction() {

 int score = 90;

 System.out.println("******If statement function to print

your score according to some conditions******* ");

 System.out.println("Your score = " + score);

 if (score <= 70) {

 System.out.println("You did not receive a passing

score!");

 } else if (score > 70 && score < 90) {

 System.out.println("You received a passing score!");

 } else if (score >= 90 && score < 99) {

 System.out.println("You received a perfect score!");

 } else if (score == 99 || score == 100) {

 System.out.println("You are genius");

 } else {

 System.out.println("I don’t know your score!");

 }

 System.out.println("\n" + "-------------------------------------

-----------------------------------");

 }

/////////////example of try-Catch block

function/////////////////////////////

public static void tryCatchfunction() {

 int num1, num2;

 System.out.println("******Try-catch block function to

handle code that may cause exception (divide-by-zero

error)**** ");

 try {

 // Try block to handle code that may cause exception

 num1 = 0;

 num2 = 62 / num1;

 System.out.println("Try block message");

 } catch (ArithmeticException e) {

 // This block is to catch divide-by-zero error

 System.out.println("Error: Don't divide a number by

zero");

 }

 System.out.println("I'm out of try-catch block in Java. so

continue excute your program");

 System.out.println("\n" + "-------------------------------------

----------------------------");

 }

////////example of short if statement Ternary Operator (? :

)/////////

 public static void ShortIfStatementTernaryOperator() {

 System.out.println("******Short if statement function

(Ternary operator ? :)*****");

 String str = "London";

 System.out.println("Your string is " + str);

 String data = str.contains("L") ? "Your String contains

'L'" : " Your String doesn't contains 'L'";

System.out.println(data);

System.out.println("\n" + "---

----------------------");

 }

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 20

///////////////////example of switch cases function/////////////////////

public static void SwitchCases() {

 System.out.println("******Switch case function to print

the month's name according to month of your birth*****");

 int monthNumber = 12;

 System.out.print(" Month of your birth is : " +

monthNumber + " ");

}

Fig. 9. Source code of Sample2. (Simple Program of Cyclomatic

Complexity Examples)

The results will be demonstrated in the form of a table. And
as we have also illustrated, we will calculate the metric CC. It
is noticed in this example that the value of the metric CC= 25
and according to the rule:

CC= number of decision statements+ 1.

Since the number of decision statements is 24 and as
follows:

(while , for , if , if , else if , && , else if , && , else if , || ,
try-catch , ?: , (switch statements (case 1 , case2 , case3 , case4
, case5 , case6 , case7 , case8 , case9 , case 10 , case 11 , case
12))

We then add 1 to them according to the rule, the value of
the metric CC equals 25.

As we have explained in the previous example, there will
be quality attributes such as Reliability risk, Testability,
Cost/effort to maintain (maintenance) that are affected by the
metric CC , as they ratios are based on the value of this metric
(CC). We also have the Bad Fix Probability. This ratio is
adopted, as we have previously stated, from certain resources
and according to certain tables and by depending on the value
of the metric CC. In this example, the value of Bad Fix
Probability equals 30% based on the value of the metric (CC).
Table(V) illustrates in detail the results of this example.

TABLE V. THE RESULTS OF THE SAMPLE2 (SIMPLE PROGRAM OF

CYCLOMATIC COMPLEXITY EXAMPLES)

And now, after the implementation of all the 2 examples,
we have written one Table (VI) which contains the results of
these examples. The value of CC has been written in addition
to the value of the Bad Fix Probability of each one of the
previous examples. Also a graph has been drawn to illustrate
the results of all the examples; i.e. represented the results of
table(VI) by what is in figure (10) where focus has been on the
value of the metric CC and the value of the Bad Fix
Probability.

TABLE VI. THE RESULTS OF THE 2 SAMPLES (PROGRAMS) OF JAVA

 switch (monthNumber) {

 case 1:

 System.out.println("(January)");

 break;

 case 2:

 System.out.println("(February)");

 break;

 case 3:

 System.out.println("(March)");

 break;

 case 4:

 System.out.println("(April)");

 break;

 case 5:

 System.out.println("(May)");

 break;

 case 6:

 System.out.println("(June)");

 break;

 case 7:

 System.out.println("(July)");

 break;

 case 8:

 System.out.println("(August)");

 break;

 case 9:

 System.out.println("(September)");

 break;

 case 10:

 System.out.println("(October)");

 break;

 case 11:

 System.out.println("(November)");

 break;

 case 12:

 System.out.println("(December)");

 break;

 default:

 System.out.println("Invalid month.");

 break;

 }

 System.out.println("\n" + "-------------------------------------

----------------------------"); }

///

 public static void main(String[] args) {

 WhileFunction();

 ForloopFunction();

 IfStatementAndOrFunction();

 tryCatchfunction();

 ShortIfStatementTernaryOperator();

 SwitchCases();

 }

Sample2 (Simple Program of Cyclomatic Complexity Examples)

Cyclomati

c

Complexit

y “CC”

metric

“CC”

numb

er

“Meaning of “CC” number

(Quality Attributes) Bad Fix

Probabil

ity
“Reliabi

lity risk”

“Testabili

ty”
Cost/Effort

to

maintain

25

Comple

x, high
risk

Low High 30%

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 21

Fig. 10. The Graph to represent the results of the 2 Samples (programs) of

Java.

CONCLUSION

After discussing a number of software complexity metrics,
we have found out that Cyclomatic Complexity, namely CC
can be regarded as the strongest metric compared to other
complexity metrics that have been discussed (Halstead, LOC).

There is noticeable advantage from calculation of the
Cyclomatic Complexity. Through it, we could calculate the
value of the programme complexity. There should be
measuring of the programme complexity (software) since this
complexity is closely and directly related to a number of
quality factors such as:

Maintenance cost and effort, understandability, reusability,
testability, reliability, testing effort, time prediction and many
others also.

By calculating the value of the CC, the values of the quality
factors may be affected by depending on the value of CC. By
doing so, we can contribute to the improvement of the concepts
for the quality of the software to a large extent and also help in
preparing strategies or certain technologies to control the
complexity of the software by depending on these concepts.

Also, simplifying testing by guaranteeing the execution of
at least one statement during testing. It checks each linearly
independent path through the program. That is to say, the
number of test cases will be equal to the cyclomatic complexity
of the program. Such information is important for testing.

In our work system, we calculated the metric CC by
depending on one of the methods of calculating CC, that is by
depending on the decisional statements. We also Identified
reliability risk level, testability level; and cost/effort so as to

maintain (maintenance risk level) by depending on cyclomatic
complexity CC. The study was implemented on 2 examples or
programmes written in Java language (OOP) as we wanted to
include all probabilities that can affect the value of the
metric(CC). We have added what is called Bad Fix Probability
which is also an important ratio whose value depends on the
value of the metric (CC). This ratio or probability is that of the
occurrence or emergence of new errors during the process of
our correction of the current programme errors. That is to say,
after doing modifications to the programme or what is called
(maintenance).

We also clarified the results by certain tables and figures to
illustrate the value of metric and its information in details.

FUTURE RESEARCH

1) The inclusion or addition of the concept of cohesion i.e.

(Intra –Module concept)and also the concept of coupling

(Inter--Module concept), i.e. Coupling Between Object

classes(CBO) so, the improvement of the concept of

Cyclomatic Complexity of the system or the software will

depend on these new concepts(cohesion and coupling).

2) The possibility of transferring the source codes that are

written in the Object-oriented programming languages to other

samples written in the Unified Modelling Language such as

the Activity diagram or Class diagram or any other model by

using a certain tool or technology. Finally, we calculate the

complexity of these models, (i.e. loading Java programmes in

the form of diagrams also and not only in the form of source

code).

REFERENCES

[1] Software Engineering, 7th edition, Roger S. Pressman, vol. 7. 2010.

[2] International Journal of Software Engineering and Its Applications Vol.
7, No. 2, March, 2013, Ayman Madi, Oussama Kassem Zein and
Seifedine Kadry on the Improvement of Cyclomatic Complexity Metric.

[3] Ankita (2014) [A Framework for Improving the Concept of Cyclomatic
Complexity in Object-Oriented Programming, 2014.

[4] Software metric [online] https://en.wikipedia.org/wiki/Software_metric

[5] NIST Special Publication 500-235, Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric. Arthur H.
Watson Thomas J. McCabe September 1996.

[6] A Review and Analysis of Software Complexity Metrics in Structural
Testing. Mrinal Kanti Debbarma, Swapan Debbarma, Nikhil Debbarma,
Kunal Chakma, and Anupam Jamatia. International Journal of Computer
and Communication Engineering, Vol. 2, No. 2, March 2013.

[7] Metric for Early Measurement of Software Complexity. Ghazal
Keshavarz et al., International Journal on Computer Science and
Engineering (IJCSE) Vol. 3 No. 6 June 2011

[8] Complexity Metrics and Difference Analysis for better Application
Management. Steve Kilner.

[9] Yahya Tashtoush, Al-Maolegi, and Bassam Arkok (2014): International
Journal of Advanced Computer Research (ISSN (print): 2249-7277
ISSN (online): 2277-7970) Volume-4 Number-2 Issue-15 June-2014
414, The Correlation among Software Complexity Metrics with Case
Study.

[10] Dr. Madhavi (2016): A White Box Testing Technique in Software
Testing: Basis Path Testing, Journal for Research, Volume 02, Issue 04,
June 2016 ISSN: 2395-7549.

[11] Measurement of Quality, Mastering Software Quality Assurance Best
Practices, Tools and Techniques for Software Developers, J. Ross 2010.

[12] An Analysis of the Design and Definitions of Halstead’s Metrics Rafa E.
AL QUTAISH, Alain ABRAN, Al-Qutaish, R. E. and Abran, A., “An
Analysis of the Designs and the Definitions of the Halstead's Metrics”,

Samples
CC

number

Bad Fix

Probability

1 Example of String (count letters,

words,…..etc)

13 10%

2 Simple Program of Cyclomatic

Complexity Examples

25 30%

http://www.ijirct.org/

Volume 3 | Issue 5 ©2018 IJIRCT | ISSN: 2454-5988

 IJIRCT1701003 International Journal of Innovative Research and Creative Technology www.ijirct.org 22

In Proceedings of the 15th International Workshop on Software
Measurement (IWSM'2005), September 12-14, 2005.

[13] [Online] https://www.coursehero.com/file/p1qe7un/Spinellis-2006-
Code-Quality-The-Open-Source-Perspective-By-D-Spinellis-Addison

[14] Software metrics (2), Alexander Serebrenik, 2IS55 Software Evolution,
2011

[15] Repurposing Code Metrics for Use within Modern Day Programming,
Luke Rickard, 2016.

[16] [Online] (Wikipedia, Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity

[17] Abhilasha , Harshitha , Bhavya , Pavithra , and Dr.Saroja (2015):
International Journal of Advanced Research in Computer Science and
Software Engineering Research Paper Available online at:
www.ijarcsse.com , Approaches to Improve Code Complexity Analysis,
Volume 5, Issue 7, July 2015 ISSN: 2277 128X.

[18] Cyclomatic Complexity for WCF: A Service Oriented Architecture, Mir
Muhammd Suleman Sarwar, Ibrar Ahmad, Sara Shahzad

[19] International Journal of Software Engineering and Its Applications Vol.
5 No. 3, July, 2011 Different Approaches to White Box Testing
Technique for Finding Errors Mohd. Ehmer Khan.

[20] Software Reliability and Testing: Know When to Say When SSTC June
2007 Dale Brenneman McCabe Software.

[21] IJISET- International Journal of Innovative Science, Engineering &
Technology, Vol. 1 Issue 3, May 2014. www.ijiset.com ISSN 2348 -
7968 Software Reliability, Metrics, Reliability Improvement Using
Agile Process Gurpreet Kaur1, Kailash Bahl.

[22] A Coupling-Complexity Metric Suite for Predicting Software Quality.
Christopher L. Gray June 2008/ the Faculty of California Polytechnic
State University San Luis Obispo]

[23] J. Software Engineering & Applications, 2009, 2: 137-143,
doi:10.4236/jsea. 2009.23020 published Online October 2009,
http://www.SciRP.org/journal/jsea Copyright © 2009 SciRes JSEA137
Cyclomatic Complexity and Lines of Code: Empirical Evidence of a
Stable Linear Relationship Graylin Jay1, Joanne E. Hale2, Randy K.
Smith1, David Hale2, Nicholas A. Kraft1, Charles Ward1.

[24] J. J. Vinju and M. W. Godfrey, “What Does Control Flow Really Look
Like? Eyeballing the Cyclomatic Complexity Metric”, IEEE 12th
International Working Conference on Source Code Analysis and
Manipulation, pp.154-163,2012.

[25] COSC 310, Software Engineering, Dr. Bowen Hui, 2017.

[26] Metrics Tool for Software Development Life Cycle. Thilagavathi
Manoharan1, IJRIT International Journal of Research in Information
Technology, Volume 2, Issue 1, January 2014.

[27] Management by Numbers© SE-CURE AG1SE-CURE AG (www.se-
cure.ch) Dr. Hans Sassenburg, SPIN –Oct. 2nd, 2009.

[28] Wikipedia, Maintainability https://en.wikipedia.org/wiki/Maintainability

[29] On the Relationship between Software Complexity and Maintenance
Costs Edward E. Ogheneovo Department of Computer Science,
University of Port Harcourt, Port Harcourt, Nigeria, Journal of
Computer and Communications, 2014, 2, 1-16..

http://www.ijirct.org/

