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I.  INTRODUCTION 

Time delays are frequently encountered in many practical 
engineering systems, such as chemical processes, long 
transmission lines in pneumatic systems [1]-[8]. It has been 
shown that the presence of a time delay in a dynamical system 
is often a primary source of instability and performance 
degradation [9]. Delay-dependent robust stability criteria of 
uncertain fuzzy systems with state and input delays are 
presented in [10]. Dynamical systems with distributed time-
varying delays have been of considerable interest for the fast 
few decades. In particular, the interest in stability analysis of 
various delay differential systems has been growing rapidly 
due to their successful applications in practical fields such as 
circuit theory, aircraft stabilization, population dynamics, 
distributed networks, manual control and so on. Current efforts 
on the problem of stability of distributed time-varying delays 
system can be divided into two categories, namely delay 
independent criteria and delay dependent criteria. Distributed 
delay systems have been considered in [11]-[14]. 

The issue of robust asymptotic stability for Delay-
dependent for systems with Time-varying and Distributed 
delays using Linear Matrix Inequalities (LMI) approach is 
remains open, which motivates this paper. In this paper, we 
establish a new LMI condition by using the Lyapunov-
Krasovskii functional to guarantee the asymptotic stability of 
the system. A sufficient condition for the solvability of this 
problem is proposed in terms of Linear Matrix Inequalities 
(LMIs). Particularly, the maximal allowable length of delays is 
obtained from LMI and the validity of this result is checked 
numerically using the effective LMI control toolbox in 
MATLAB [15]. 

NOTATIONS: Throughout this paper, for a matrix B  and 

two symmetric matrices A  and C , 
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BA

 denote the symmetric matrix, where the notation 

* represents the entries implied by symmetry. 
TA  and 

1A  

are denotes the matrix transpose and inverse of A  

respectively. We say 0>X  for 
nX   means that the 

matrix X  is real symmetric positive definite. PP   refers to 

the Euclidean norm for vectors. And I  denotes the identity 
matrix with appropriate dimensions. 

II. SYSTEM DESCRIPTION AND PRELIMINARIES 

The following system with time-varying is considered in 
this paper, 
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where 
ntx )(  is the state. The initial vector 

0C ,where 0C  is the set of continuous functions from 

,0][   to 
n . )(t  and )(td  denotes the time-varying and 

distributed delays respectively, and are is assumed to satisfy. 
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where d,  and u  are constants. The matrices 

)(=)()(=

)(),(=)(),(=)(

tDDtandDtCC

tCtBBtBtAAtA




 

are known real constant matrices with appropriate dimensions. 

)(),(),( tCtBtA   and )(tD  are real-valued unknown 

matrices representing time-varying parameter uncertainties, 
and are assumed to be of the form. 
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Where L  and 1,2,3,4)=(, iEi  are known real constant 

matrices and )(tF  is unknown time-varying matrix functions 

satisfying ttFtFT 1,)()(  
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Lemma 2.1 (Schur complement [16]). Let QPM ,,  be 

given matrices such that 0>Q , then  

 0<0< 1MQMP
QM

MP T

T











.  

  

 Lemma 2.2 Given any matrices YX ,  and S  with 

appropriate dimensions such that 
TSS =<0 ,the following 

inequality holds  

 .2 1YSYSXXYX TTT   

  
 Lemma 2.3 [17] For any constant matrix 

0,>=, Tnn MMRM   scalar 0,>  vector function 

nRw ][0,:   such that the integrations concerned are 

well defined, then  
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 Lemma 2.4 ([18])For given matrices ED,  and F  with 

IFFT   and positive scalar 0> , the following 

inequality holds:  

 .1 EEDDDFEDFE TTTTT    

  
 Lemma 2.5 ([19]) For real matrices 

1,2,3)=(=0,> iiMP  with appropriate dimensions, and 

)(t  satisfying (2), then  
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III. MAIN RESULTS 

Theorem 3.1 Given scalars 0>0,> d  and 0>u , the 

system described in (1)  with time-varying and distributed 

delays satisfying (2)  is asymptotically stable. If there exist 

matrices 0>0,> RQ  and appropriately dimensioned 

matrices 1,2,3)=(, lM l , and scalar 0>  such that the 

following LMI holds. 
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Proof : Define the Lyapunov functional candidate as  
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Applying Lemma 2.3  and 2.5 , we obtain  
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By using Eqn.(3) and Lemma 2.4, we obtain  
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Combining (7) to (9), we have  
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Thus, we conclude that the system (1)  with (2)  is 

robustly asymptotically stable. 

IV. NUMERICAL EXAMPLES 

Example: Consider the system (1), with following 
example matrices,  
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For example the prescribed H  performance level is 

chosen as 1= . In order to design a Delay-dependent H , 

taking 0.5=,0.5,= d  and 0.1=u , applying the 

Theorem 3.1 the LMI solutions are, 

,
1.78280.0359

0.03591.7496
=

,
2.38440.1652

0.16522.2885
=

,
2.67310.1563

0.15632.4918
=
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 2.8029=  

By theorem 3.1, we can obtain the desire state feedback 
controller as follows:  










0.75100.0471

0.04710.8056
=K .  

Therefore, the concerned system is robustly asymptotically 
stable. 

CONCLUSION 

In this work, we have studied the H  control for uncertain 

systems with time-varying and distributed delays. On the basis 

of Lyapunov-Krasovskii functional, a delay-dependent H  

control scheme is presented in terms of Linear Matrix 
Inequality (LMI). It has been shown that a desired state 
feedback controller can be constructed when the given LMIs 
are feasible. A numerical example have been carried out to 
demonstrate the effectiveness and the merit of the proposed 
method. 
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