Volume 1| Issue 2

©2015 VIRCT | ISSN: 2454-5988

Single Flow Channel PEM Fuel Cell Performance
Analysis for Various Cell Voltages

M.Manivannan
Assistant Professor
Department of Mechanical Engineering
Mailam Engineering College
Villupuram, Tamilnadu, India.

T.Narayanan
Assistant Professor
Department of Mechanical Engineering
Mailam Engineering College
Villupuram, Tamilnadu, India.

Abstract— The design and operating parameters are the key
factors which are influenced in fuel cell performance. The
creation of water droplets on the gas diffusion layer enriches the
resistance for flow reactants stuck between cathode and anode
side. So as to resolve the above issues single flow channel PEM
fuel cell is selected to look out its performance for different cell
voltages in the same operating conditions. This numerical
analysis shows that the PEM fuel cell with a cell voltage of 0.4V
contributes the extreme current density of 0.8698 A/cm2 in the
midst of other cell voltages.
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l. INTRODUCTION

With an accretion acquaintance of ecology apropos and a
admiration for action independence, the development of
renewable and apple-pie action sources has become the focus
of cogent analysis activity. Hydrogen will play a above role in
accomplishing the all-around action demands in future. Fuel
cell, acting as a transducer, absorbs action from hydrogen
abridgement and evolves electrical action emerged as an ideal
best for use in a wide range ability supplies. The PEMFCs are
currently beneath accelerated development and affiance to
become an economically applicable bartering ability antecedent
in abounding areas, abnormally for transportation, stationary,
carriageable and automobile applications, because of their top
action body at low operating temperatures and aught emissions
[1]. In this exertion, numerous discriminating issues of PEMFC
innovation should be tended to. One of the key issues is the
execution improvement of power module by mulling over the
impact of different working and configuration parameters.
Ideal stream rate was fundamental for shallow channel
profundity to keep up adequate weight to constrain reactant
into channel furthermore to have fitting water parity [2]. The
‘flooding’ of a gas diffusion layer is a phenomenon often
observed when cell performance decreases at higher current
densities [3-5]. Weng et al. [6] have developed a transparent
proton exchange membrane fuel cell in order to visualize the
distribution of water and water flooding inside the cathode gas
channels. Gas distributor or flow field is the vital part of the

R.Manikandan
Assistant Professor
Department of Mechanical Engineering
Mailam Engineering College,
Villupuram, Tamilnadu, India.

M.Vijayaraj
Assistant Professor
Department of Mechanical Engineering
Mailam Engineering College,
Villupuram, Tamilnadu, India.

PEM fuel cell which supplies fuel and removes reaction
products. Moreover, the flow fields can affect the water flow
and distribution within fuel cell [7-9]. Mainly, the cathode gas
diffusion layer causes a decrease in performance of fuel cell
when the process is mass transport limited. The liquid water
formation from the electrochemical reaction results in water
flooding of the porous media, especially the cathode gas
diffusion layer, which obstructs the reactant gas that is flowing
to the catalytic electrodes [10-12].

Il.  PROBLEM FORMULATION

Complete three dimensional model of the high temperature
single flow channel PEM fuel cell is created using commercial
modeling software package. The various design inputs like
channel length, channel height, channel width, rib width and
membrane thickness etc., are considered to create the isometric
model. The three dimensional model is shown in figure.l.
Meshing of the above model is done by using the commercial
analysis software. The entire model is meshed with fine mesh
elements for getting the better numerical results. Complete
mesh is shown in Fig. 2.

I1l. DESIGN

Fig. 1. Three dimensional model
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The entire three dimensional model of the single flow
channel is created by using commercial modeling software
with different design parameters such as Rib width Plate width
Gdl height, channel length, channel height, channel width,
membrane thickness, and gas diffusion layer thickness. The
complete model is imported into commercial analysis software
after the successful completion of the three dimensional model
of PEM fuel cell with single flow channel configuration. The
entire model is meshed with fine meshing elements to enhance
the numerical results.

Fig. 2. Mesh model

IV.  ANALYSIS
The mesh model of PEM fuel cell is analysed in

commercial analysis software with different operating
parameters like cell voltage, open circuit voltage, lumped
anode resistance, membrane resistance, cell temperature,
oxygen reference concentration, gdl porosity, gdl permeability,
inlet H20 mass fraction (cathode), inlet Oxygen mass fraction
(cathode), inlet Hydrogen mass fraction (anode), inlet velocity,
outlet velocity, fluid viscosity, nitrogen molar mass, water
molar mass, oxygen molar mass, N2-H20 binary diffusion
coefficient, O2-N2 binary diffusion coefficient, 02-H20
binary diffusion coefficient, reference pressure, cathodic
transfer coefficient are taken into account. The numerical
results are obtained in the form of colour plots by clicking the
compute domain for the eleven cell voltages.

V. RESULTS & DISCUSSIONS

Fig.1 to Fig.11 depicts the numerically analyzed results of
the membrane current density of Single Flow Channel PEM
Fuel Cell for the eleven cell voltages likely 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.70, 0.75, 0.8, 0.85 and 0.9V respectively. The PEM
fuel cell with a cell voltage from 0.4V to 0.9V yields the
membrane current densities of 8698, 7252.5, 5848, 4509.5,
3269.7, 2170.6, 1267.1, 618.29, 245.69, 83.064 and 25.862
A/m2 respectively. Fig.12 shows the reactant gases flow
velocity for all cell voltages in PEM fuel cell. It also depicts the
membrane current densities of single flow channel PEM fuel
cells are gradually decreased with the increasing cell voltages.
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Fig. 3. Membrane current density at 0.4V
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Fig. 4. Membrane current density at 0.45V
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Fig. 5. Membrane current density at 0.5V
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Fig. 6. Membrane current density at 0.55V Fig. 9. Membrane current density at 0.7V
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Fig. 7. Membrane current density at 0.6V Fig. 10. Membrane current density at 0.75V
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Fig. 8. Membrane current density at 0.65V

Fig. 11. Membrane current density at 0.8V
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12. Membrane current density at 0.85V
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13. Membrane current density at 0.9V
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