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Abstract--the problem of propagation of shock waves 

has been discussed in a gas containing small solid 

particles through a tube of variable area of cross-section 

by using the method developed by Whitham. The mixture 

of gas and solid particles is assumed to be in viscid and the 

flow is governed by Euler’s equations expressing 

conservation of mass, momentum and energy. The results 

derived here are generalization of the results obtained 

previously in absence of small solid particles. Effects of a 

change in the value of parameters of small solid particles 

kp and G on the shock propagation are discussed. 
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I.  INTRODUCTION  

The study of the shock wave propagation through a 
gaseous medium has a wide range of applications in 
engineering problems, applied physics and in fluid dynamics. 
The problem of converging shock waves and detonation 
waves are the promising means to produce an extreme 
condition of very high temperature, pressure and density. 
This problem of converging shock waves was first presented 
and discussed by Guderley [1]. \ 

This study gives a shock of infinite strength at the center 
of convergence. A numerical solution for a converging 
cylindrical shock was given by Payne [2]. The problem of a 
contracting spherical or cylindrical shock front propagation 
in to a uniform gas at rest was studied by Stanyukovich [3]. 
The problems of implosion of a spherical shock wave in a 
gas and the collapse of a spherical bubble in a liquid are 
discussed by Zeldovich and Raizer [4] by using self-similar 
solution method. Matsuo [5] has described the whole history 
of the fluid motion from the initial stage to the focusing stage 
by using non-similar approximated method. 

Whitham [6] has given a very simple and effective rule 
for the analysis of imploding shocks. A large number of 
problems have been discussed with the help of this rule, for 
example, the description of propagation process of shock 
waves, through a channel of variable section (Chisnell [7]), 
in a medium of variable density (Tyl and Wlodarczyk [8]), in 
a non-ideal gas (Ojha and Tewari [9]), in astrophysical 
atmosphere (Bird [10], Ojha and Singh [11], Ojha and Nath 
[12], Ojha and Singh [13], Ojha and Tewari [14]) and in the 
analysis of imploding detonation waves (Lee and Lee [15], 

Singh [16]). Although the Whitham rule is approximated but 
it agrees well with exact solutions and with experimental 
results (Lee [17], Guy [18], Jumper [19]). 

In many astrophysical situations and in engineering 
problems, it is necessary to consider the high speed of the 
flow of a mixture of gas and small solid particles (Miura and 
Glass [20], Pai et al. [21], Vishwakarma and pandey [22]). 
Our aim here is to discuss the propagation of shock waves 
through a tube of variable area of cross-section containing a 
mixture of a gas and small solid particles. The mixture model 
used here is similar to that of Pai et al [21], Steiner and 
Hirschler [23]. 

In course of discussion, we have used the method 
developed by Whitham [6]. The fundamental equations and 
the shock conditions across the shock are summarized here 
in section 2 from a number of investigations such as; Pai et al 
[21], Steiner and Hirschler [23], Vishwakarma and Pandey 
[22].  Discussion of the problem are given in section 3 and 
the results are in section 4. 

II. BASIC EQUATIONS 

The fundamental equations for the one dimensional 

unsteady flow of a mixture of a gas and small solid particles 

flowing in a channel of variable area of cross-section A can 

be written as  

(2.1)  

0
x

A

A

u

x

u

x
u

t





























, 

 

(2.2)  
x

p

x

u
u

t

u
























, 

 

(2.3) 

 

0
x

u
t

p

x

e
u

t

e

2































, 

where  is density of the mixture, u the flow velocity, p the 

pressure, e the internal energy per unit mass of the mixture, x 

the distance along the channel and t the time.  

 Let us assume the flow to be a gas mixture obeying 

the equation of state of Mie-Grüneisen type (Pai et al. [21]), 
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Where R* be the gas constant, z the volume fraction of solid 

particles in the mixture and kp is the mass concentration of 

the solid particles. The relation between kp and z is given by, 
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where sp is the species density of the solid particles, z0 and 

0 are the initial values of z and  respectively, and G the 

ratio of the density of solid particles to the initial density of 

gas. 

 

 The internal energy e of the mixture may be written 

as 

 (2.7)      e = [kp Csp + (1 kp) Cv]T = Cvm T, 

 

where Csp is the specific heat of solid particles, Cv the 

specific heat of the gas at constant volume and Cvm the 

specific heat of the mixture at constant volume. 

 The specific heat of the mixture at constant pressure 

is 

(2.8)      Cpm = kp Csp + (1 kp) Cp, 

 

where Cp is the specific heat of the gas at constant pressure. 

 The ratio of the specific heat of the mixture is given 

by 
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 The internal energy e of the mixture is, therefore, 

given by 

(2.10)  e = 
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The speed of sound a, in the mixture is defined by 

(2.11)           a2 =
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With the help of (2.10), (2.11) and (2.1) equation (2.3) may 

be written as  

(2.12) 
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. 

 Let a strong shock wave be propagating into the 

homogeneous gas mixture of constant density 0


. Again let 

the gas mixture be at rest with negligibly small counter 

pressure. Then, the relations between the quantities in front 

and behind the shock in a homogeneous mixture are (Steiner 

and Hirshchler [23], Vishwakarma and Pandey [22]), 
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           Equations (2.13) and (2.14) can be written as, 
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 Introducing (2.10), (2.16) and (2.17) into (2.15), 

yields after some manipulation 
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III. DISCUSSION OF THE PROBLEM 

 

Now we apply the Whitham’s rule to determine the 

shock wave propagation through a channel of variable 

section containing a mixture of gas and small solid particles. 

By using equations (2.1), (2.2) and (2.12) we may write,  

(3.1) 
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In characteristic form (4.1) may be written as  
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 The Whitham’s rule states that when the relevant 

equations are written first in the characteristic form, the 

differential relation which must be satisfied along a 

characteristic can be applied to the flow quantities just 

behind the shock wave. Together with the shock relations, 

this rule determines the motion of the shock wave. We 

assume here that the shock relations to hold, of course, 

within the order of approximation determined by a constant 

value of U. We apply here the differential relation (3.3) 

along the characteristic behind the shock wave. Together 

with the shock conditions we are able to describe U or 

related quantities in terms of equilibrium quantities. Using 

(3.11), (3.18), (3.19) and (3.20) we find, 
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Substitution of (4.4) and (4.5) into (4.3) gives 
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 The law of propagation of shock wave can be 

determined by integration of (4.6). For a certain value of 

K(z0) the integration of (4.6) gives 

 (3.8)          
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where U  and A  are the values of U and A at some 

reference position. 

The corresponding laws for the variation of u1 and p1 are 

given by 
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In absence of solid particles, the value of K(z0) takes the 

form K() as, 

(3.11) 
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which is equivalent to the expression obtained in case of 

ideal gas. 

 Thus, effects of presence of small solid particles on 

the propagation of shock waves and on the flow variables 

behind the shock waves can be obtained from the 

expressions (4.8), (4.9) and (4.10). 

 

IV. RESULTS 

Variation of the non-dimensional shock velocity 
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, 

the non-dimensional fluid velocity
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 and the non-
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dimensional pressure 
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 with the non-dimensional 

channel cross-section 
A

A
 are obtained from equations (4.8), 

(4.9) and (4.10) and plotted in figures 1 to 3 for dust-free 

case and for G = 10and 100, and in figures 4 to 6 for G = 1. 

Values of the constant parameters are taken to be  = 1.4;

  = 1;       kp = 0, 0.2, 0.4;   and  G = 1, 10, 100. 

The value kp = 0 corresponds to the case of dust-free perfect 

gas. The value G = 1 corresponds to z0 = Kp, i.e. the case 

when initial volume fraction of solid particles in the mixture 

is equal to the mass fraction of solid particles. 

 Figures 1-3 show that the shock velocity
U

U
, fluid 
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 and pressure 
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 remain almost constant 

during some distance, and then start to increase rapidly and 

tends to infinity as the point of convergence is approached. 

On the other hand, figures 4-6 show that, as 
A

A
 decreases, 

these variables decrease and tend to zero as the point of 

convergence is approached. Thus the behaviour of the 

variables
U

U
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, 
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 for G = 1 are in contrast with 

those for dust-free case and for G = 10, 100. This 

phenomenal behaviour of variables may be, physically, 

interpreted as follows. 

 In fact, at G = 1, the initial volume fraction of solid 

particles in the mixture z0 is equal to kp, as mentioned 

earlier, and therefore at higher values of kp, z0 is higher. This 

means a significant portion of mixture ( 20 % or 40% of the 

total volume, when G = 1 and kp = 0.2 or 0.4) is occupied by 

small solid particles causing a heavy loss in compressibility 

of the medium, which is responsible for strong decay in 

shock velocity and other variables. 

 Figures 1-3 show that the effects of an increase in 

kp depends on the value of G. When G = 10, an increase in 

kp results in an early growth of the flow variables, whereas 

when G = 100, it results in somewhat delayed growth of the 

variables. 
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