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Abstract 

Topological groups is  logically the combination of groups and topological spaces,  

they are groups and topological spaces at the same time, such that the continuity 

condition for the group operations connects these two structures together and 

consequently they are not independent from each other. The generalised structure 

which includes several fields such pointset topology, algebraic topology, and 

differential topology. Dubois, D (5 ) ,J. Zhang (1 0 ) ,  Felix Hausdorff, Maurice Frechet, 

and Henri Poincare studied its basic properties based on Topological space and some 

geometrical structure.A pre-topological group G is a group which is also a pre -

topological space such that the multiplication mapping of G × G into G sending x × y  

into x ·  y ,  and the inverse mapping of H into G sending x  into x−1 ,  are pre-continuous 

mappings.  

Keywords: (Topological groups, Euclidean topology,  Hausdorff,  algebraic topology, 

Arbitrary unions and homeomorphism) 

1 Introduction  

It  mainly studied the generic questions in topological algebra is how the relationship 

between topological  properties depend on the underlying algebraic structure.  As we all  

known, a topological group, that is, a group G is endowed with a topology such that the 

binary operation G × G → G is jointly continuous and the inverse mapping. In : G → G, 

i.e,. x  → x−1  ,  is also continuous. The properties of topological groups have been widely 

used in the study of topology, analysis and category  

Let(X, τ) be a topological  space. We say (X, τ) has the finiteintersection propertywhen the 

following holds: LetF be a family of closed sets of X with ∩{F :  F ∈  F} = ∅ ,  then there 

exists a finite subfamily  F1 ,  F2 ,  . . .Fn  of elements of F such that ⋂𝑖=1
𝑛 ∅ i .we will use a 

different, but equivalent,  form of the finite intersection property: if, for al l finite 

subfamilies of F we have⋂𝑖=1
𝑛 ∅ i ,  then ∩{F :  F ∈  F}∅ .  A topological space is compact if  

and only if i t  has the finite intersection property. A topological group is a set  that has 

both a topological structure and an algebraic structure.  We consider a metric space is a 

generalization of a Euclidean space and a topological space is a generalization of a metric 

space. Instead of having a metric that tel ls us the distance between two points,  

topological spaces rely on a different notion of closeness; points are related by open sets.   
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The Properties of compactness in topological  spaces are defined (X, τ) be a topological  

space and  S ⊂X. An open cover O of S is a collection of open sets that  contain S, in 

symbols we have  S ⊂∪{U :  U ∈O} .Let(X, τ) be a topological space and  S ⊂X. The set  S is  

compact in (X, τ) when every open cover has a finite sub cover.  That is,  for any collection 

O that  covers S, there exist U1 ,  U2 ,  . . .Un∈O such that  𝑆 ⊂ 𝑈𝑖=1
𝑛 𝑈𝑖.   

2 Theorem  

Let(X, τX) and(Y, τY  )be a topological spaces and let  f  :  X → Y be a function .  The 

following three statements are equivalent.  

i) f  :  X → Y is continuous  on X,  

ii) f−1(U) is  open in X for all  open sets  U in Y ,  

iii) f−1(F) is closed in X for all closed sets F of Y .  

Many statements that are true for continuous functions in metric spaces are also true in 

topological spaces.  An example of this is the transit ivity of continuity.  

3 Theorem  

Let(X, τX) and(Y, τY )and(Z, τZ) be topological spaces such that  g :  X → Y is continuous  at 

x0  ∈X and  f  :  Y → Z is continuous at  g(x0) ∈Y . It follows that(f  ◦ g) (x) is continuous at  

x0 .  

Proof 

By using definition, we have: g :X → Y is  continuous at x0 :  N ∈  Ng (x0 )  implies g−1(N) ∈Nx0 

f  :  Y → Z is  continuous at  g(x0): M ∈  N f ( g (x0 ) )  implies f−1(M) ∈Ng (x0 ) .  In order to prove that 

(f  ◦ g)(x) is continuous at x0  it  must be shown that N ∈  N ( f  ◦g ) (x0 )  implies g−1(f−1(N)) ∈Nx0 .  

Let us now assume that N ∈  N ( f (g (x0 ) ) .  Since f  is  continuous at  g(x0), it  follows that f− 1(N)  

∈Ng (x0 ) .  Since g is continuous at x0  we have g−1(f−1(N)) ∈  Nx0, as required. Hence, it  is  

proved. Wediscussconvergence in a topological  space for which let us define what a net  

is, and its  relevant properties.   

4 Theorem 

Let(X, τ) be a topological  space and S a subset of  X. Theclosureof S is the setof all  points 

in X that  are a limit  of a net in S. This can be worded as: x ∈𝑆 if and only if x is  the limit  

of a net in S .  This is  a property of limits in metric spaces that  carries over to topological  

spaces.  

Proof 

Let us consider Nx  as a directed set  defined by M ≼  Nwhen N ⊂M for M, N ∈Nx  for some 

x .  Assume that x ∈𝑆,  by definition (iii) we find that for al l N ∈Nx ,  there exists an xN ∈N 

∩S .  We thus find that the net  (xN)N ∈ Nx  converges to x ,  this is because all neighbourhoods 

of x contain x .  For the other direction let (xα)α∈ A be a net in S that converges to x .  Let us 
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assume by way of contradiction that  x ∈/  𝑆,  so x ∈X \𝑆.  We know that 𝑆 is  closed, this 

implies that X \𝑆 is open, which means that X \𝑆 is a neighbourhood of x .  Since (xα)α∈ A 

converges to a point  outside of 𝑆,  there exists some αN ∈A such that xα  ∈X \𝑆 for al l N≼  

 .  We know hat x \  𝑆⊂x \  S ,  so xα  ∈X \S for all  N≼   .  This is a contradiction since 

(xα)α∈ A is  a net in S .  Hence, the theorem is proved.   

5 Theorem 

Let(X, τ1) be a compact space, let (Y, τ2) be a topological  space and let f  :X → Y be a 

continuous function. Then  f(X) is compact .  

Proof  

Let O be an open over for f(X). By using theorem (6) we know that { f−1(U) :  U ∈O} is an 

open cover for X .  Since X is compact,  there is  a finite subcover. There exist  U1 ,  U2 ,  

. . .Un∈O such that X ⊂f−1(U1) ∪f−1(U2) ∪ . . .  ∪f−1(Un). It  follows that f(X) ⊂U1  ∪U2  ∪ . . .  

∪Un .  Thus, an arbitrary open cover of f(X) has a finite subcover.  Hence, the theorem is 

proof.   

6 Theorem 

Let(X, τ) be a compact topological  space and let Y be a closed subset of X. Then Y is a 

compact set .  

Proof 

Let O be an open cover for Y .  Because Y is closed in X ,  X/Y is  open in X .  From this we get 

that  O ∪X/Y is  an open cover for X .  Since X is compact there must be a finite subcover.  

So, there exist  U1 ,  U2 ,  . . .Un∈U such that X ⊂U1  ∪U2  ∪ . . .  ∪Un  ∪  (X/Y ).  It  follows that Y 

⊂U1  ∪U2  ∪ . . .  ∪Un .  An arbitrary open cover of Y has a finite subcover, thus Y is compact.   

7 Theorem 

Let(X, τ) be a topological space. If  K1 ,  K2 ,  . . .  Kn  are a family of compact sets in (X, τ) ,  

then 𝑈𝑖=1
𝑛 K i is compact .  

Proof 

Let O be an open cover for 𝑈𝑖=1
𝑛 K i .  Since K i  is a subset of 𝑈𝑖=1

𝑛 K ifor al l i ,  then O is  an open 

cover for all K i .  Since each K i  is compact, there is a finite subcover of O for each i ,  we 

denote each subcover by O i .  It  follows that  𝑈𝑖=1
𝑛 Q i  covers 𝑈𝑖=1

𝑛 K i .  The finite union of a 

collection of finite sets in finite and 𝑈𝑖=1
𝑛 O i  so we have our finite subcover. This 

completes the proof.   
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