
Volume 11 Issue 2 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2504004 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Building a Scalable ETL Pipeline with Apache

Spark, Airflow, and Snowflake

Ujjawal Nayak

Software Development Manager

Abstract

Extract, Transform, and Load (ETL) pipelines are critical in modern data engineering, enabling

efficient data integration and analytics. This paper presents a scalable ETL pipeline leveraging

Apache Spark for distributed data processing, Apache Airflow for workflow orchestration, and

Snowflake as a cloud-based data warehouse. The proposed architecture ensures fault tolerance, cost

efficiency, and high scalability, making it suitable for handling large-scale enterprise data workloads.

Keywords: ETL, Apache Spark, Airflow, Snowflake, Data Engineering, Scalable Architecture

I. Introduction

In the era of big data, enterprises require robust ETL pipelines to ingest, process, and store vast amounts of

data efficiently. Traditional ETL tools often struggle with scalability, necessitating a modern approach using

distributed computing and cloud-based storage solutions. Apache Spark, Apache Airflow, and Snowflake

are powerful combinations to build resilient and scalable ETL pipelines.

This paper uses these technologies to explore an ETL pipeline's architecture, implementation, and

optimization strategies, ensuring performance and cost-effectiveness.

II. Architecture Overview

The proposed ETL pipeline consists of three core components:

1. Apache Spark - Performs large-scale data transformations using a distributed computing

framework.

2. Apache Airflow - Orchestrates ETL workflows, ensuring job scheduling and dependency

management.

3. Snowflake - Serves as the destination for transformed data, providing scalable and efficient cloud

storage.

Volume 11 Issue 2 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2504004 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

Figure 1: Architecture Overview

This modular architecture ensures fault tolerance and scalability while maintaining ease of maintenance.

III. ETL Pipeline Components

A. Data Extraction

Data is extracted from various sources, including relational databases (PostgreSQL, MySQL), NoSQL

stores (MongoDB), and cloud storage (AWS S3, Azure Blob Storage). Apache Spark’s Spark SQL and

Structured Streaming enable efficient batch and real-time data extraction.

B. Data Transformation

Using Spark’s Resilient Distributed Dataset (RDD) and DataFrame API, raw data undergoes

transformation processes such as cleansing, deduplication, enrichment, and aggregation. Spark’s parallel

processing capabilities allow for the efficient handling of large datasets.

C. Data Loading

Transformed data is loaded into Snowflake using Spark Connector for Snowflake or COPY INTO

commands. Snowflake’s auto-scaling and compression features ensure high-performance storage and

querying capabilities. Instead of using matrices, generic views are implemented to structure and optimize

data retrieval efficiently.

IV. Workflow Orchestration with Apache Airflow

Airflow manages ETL job scheduling and execution using Directed Acyclic Graphs (DAGs). Key

functionalities include:

● Task Dependencies: Ensuring sequential execution (Extract → Transform → Load).

● Retries & Alerts: Handling failures with automatic retries and notifications.

● Parallel Processing: Optimizing execution using Airflow Executors (Celery, Kubernetes).

Volume 11 Issue 2 @ 2025 IJIRCT | ISSN: 2454-5988

IJIRCT2504004 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

V. Optimization Strategies

To enhance performance and cost efficiency, the following strategies are applied:

1. Spark Optimization:

○ Caching intermediate results.

○ Using predicate pushdown to reduce data scans.

○ Configuring dynamic resource allocation to optimize cluster usage.

2. Airflow Optimization:

○ Using task parallelism with worker nodes.

○ Implementing XComs for efficient data sharing between tasks.

3. Snowflake Optimization:

○ Partitioning large tables for efficient querying.

○ Leveraging generic views to improve query performance and avoid unnecessary

recomputation.

VI. Case Study and Performance Benchmarking

A real-world implementation is evaluated by processing a large dataset. The performance analysis highlights

improvements in ETL execution time, cost efficiency, and system scalability. Spark optimizations contribute

to faster data processing, Snowflake's features enhance storage and retrieval efficiency, and Airflow ensures

smooth task orchestration. The results demonstrate the effectiveness of this architecture in handling growing

data volumes while maintaining operational efficiency.

VII. Conclusion

This paper demonstrates the effectiveness of Apache Spark, Airflow, and Snowflake in building a scalable

ETL pipeline. The proposed approach ensures efficient data ingestion, transformation, and storage while

optimizing costs. Future work includes integrating AI-driven anomaly detection and real-time analytics.

References

[1] Apache Spark Documentation (2025), https://spark.apache.org

[2] Apache Airflow Documentation (2025), https://airflow.apache.org

[3] Snowflake Documentation (2025), https://docs.snowflake.com

[4] M. Zaharia et al., "Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing," USENIX NSDI (2012).

[5] Apache Spark Tuning Guide, https://spark.apache.org/docs/latest/tuning.html

[6] Airflow Best Practices (2025), https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html

[7] Snowflake Performance Tuning Guide, https://docs.snowflake.com/en/user-guide/performance-tuning

[8] M. Armbrust et al., "Spark SQL: Relational Data Processing in Spark," ACM SIGMOD, (2015).

[9] Spark Connector for Snowflake (2025), https://docs.snowflake.com/en/user-guide/spark-connector

https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://airflow.apache.org/
https://airflow.apache.org/
https://airflow.apache.org/
https://docs.snowflake.com/
https://docs.snowflake.com/
https://docs.snowflake.com/
https://spark.apache.org/docs/latest/tuning.html
https://spark.apache.org/docs/latest/tuning.html
https://spark.apache.org/docs/latest/tuning.html
https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html
https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html
https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html
https://docs.snowflake.com/en/user-guide/performance-tuning
https://docs.snowflake.com/en/user-guide/performance-tuning
https://docs.snowflake.com/en/user-guide/performance-tuning
https://docs.snowflake.com/en/user-guide/spark-connector

