
Volume 6 Issue 4 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2503107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

The Evolving Landscape of Front-End Tooling

and Workflows: A Historical Analysis

Venkata Padma Kumar Vemuri

padma.vemuri@gmail.com

Santa Clara, CA

Abstract:

This article conducts an extensive historical analysis of front-end development tooling and workflows,

tracing their evolution from static HTML-based pages of the early internet era to today's sophisticated

interactive applications. By examining the inception and progression of core technologies such as

HTML, CSS, and JavaScript, as well as exploring pivotal JavaScript frameworks like AngularJS,

React, Vue.js, and Svelte, the article highlights transformative architectural and workflow

advancements up to January 2020. Further, it investigates the rise of component-based architecture,

state management solutions, advanced tooling such as Webpack and Parcel, innovations in package

management with Node.js and npm, and the adoption of mobile-first design, accessibility standards,

and security practices. This comprehensive historical analysis serves as an essential resource for both

practitioners and researchers aiming to understand the evolution and foundational practices shaping

contemporary front-end development.

Keywords: front-end development, JavaScript frameworks, AngularJS, React, Vue.js, Svelte,

Webpack, Parcel, component-based architecture, state management, front-end tooling, responsive

design, accessibility, software workflows.

I. INTRODUCTION

The domain that pertains to front-end development, which is fundamentally concerned with the user-facing

components and features of software applications, has experienced a remarkable and transformative period

characterized by rapid advancements and significant changes in its landscape. The journey has taken us from

the plain and fundamental static web pages that were common during the internet's infancy to the incredibly

intricate, interactive, and user-focused applications that are now everywhere in our digital world, showcasing

how the technologies, tools, and approaches employed in front-end development have continually progressed

and adapted at a notably swift pace, in tune with the ever-changing landscape of user desires and tech

breakthroughs. A solid understanding of this evolutionary journey is imperative for software engineers and

technical leaders, since it gives them crucial context about contemporary industry practices while also

elucidating the foundational principles and theoretical frameworks that underpin modern web development.

This article seeks to thoroughly and, in a time ordered fashion analyze the key transformations and

improvements in front-end tools, frameworks, and workflows that have unfolded until January 2020, thereby

providing an extensive and careful historical examination of this perpetually developing and dynamic area of

inquiry. By delving into the critical technologies, significant architectural shifts, and the emerging best

practices that have characterized this era, this report aspires to furnish a valuable and insightful resource for

practitioners and scholars alike who seek to gain a deeper appreciation of the foundational elements that have

shaped contemporary front-end development practices.

II. THE EARLY LANDSCAPE (PRE-FRAMEWORK ERA)

The genesis of front-end development can be traced back to the early 1990s with the advent of the World

Wide Web. At its core lay HyperText Markup Language (HTML), conceived by Tim Berners-Lee, which

provided the fundamental structure for organizing content on web pages. Initially, web pages were largely

static, primarily serving as repositories for textual information, although the language progressively

incorporated support for richer media like images[1]. As the web expanded, the need for enhanced visual

mailto:padma.vemuri@gmail.com

Volume 6 Issue 4 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2503107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

presentation and layout capabilities became apparent. Cascading Style Sheets (CSS) emerged in the mid-

1990s to address this requirement, enabling developers to separate the styling and layout of web pages from

their underlying HTML structure. This separation marked an early step towards improved code organization

and maintainability. Complementing these technologies was JavaScript, introduced in 1995, which brought

interactivity to the previously static web pages. Initially utilized for simple dynamic effects and form

validation, JavaScript's role would expand dramatically over time[1].

The initial web development workflows in this pre-framework era were characterized by the manual coding

of HTML to define content, CSS to handle styling, and basic JavaScript to add limited interactivity.

Developers directly manipulated the Document Object Model (DOM) to achieve dynamic behavior. However,

as web applications grew in complexity, this approach presented significant challenges. Scalability became a

major concern as managing large codebases with intertwined HTML, CSS, and JavaScript proved increasingly

difficult. Maintaining consistency across different parts of an application and ensuring cross-browser

compatibility were also substantial hurdles, given the varying levels of support for web standards across

different browsers. The limitations of these foundational technologies in building sophisticated, interactive

applications highlighted the necessity for more structured tools and methodologies. The separation of

concerns achieved by CSS, even in these early stages, demonstrated the inherent benefits of modularity in

web development by disentangling presentation from content, contributing to better code organization and

ease of maintenance.

III. THE RISE OF JAVASCRIPT FRAMEWORKS

The limitations of the pre-framework era paved the way for the emergence of JavaScript frameworks, which

revolutionized front-end development by providing structure, organization, and enhanced capabilities for

building complex web applications.

A. AngularJS (Released around 2010)

AngularJS, an open-source project by Google, was introduced around 2010 and is recognized as a

groundbreaking framework that brought structure and modularity to front-end development. It introduced

several core concepts that significantly impacted how developers-built web applications. One of its key

innovations was two-way data binding, which automated the synchronization between the application's data

model and the user interface view 7. This feature reduced the need for manual DOM manipulation and

simplified the development of dynamic user interfaces. AngularJS also championed dependency injection, a

design pattern that promoted more organized and maintainable code by managing the dependencies between

different components of an application [13]. Furthermore, it introduced directives, which allowed developers

to extend the HTML syntax with custom elements and behaviors, enhancing the expressiveness and

modularity of the marku[2]p. The framework's impact on structuring front-end applications was substantial,

providing a more organized and efficient approach to tackling complex development tasks. However, as web

applications continued to evolve in complexity, AngularJS eventually faced limitations, leading to the

development of its successor, Angular 2+ (now simply known as Angular), which involved a complete rewrite

of the framework.[1]

B. React (Released in 2013)

React, developed by Facebook and released in 2013, emerged as another revolutionary force in front-end

development, primarily focusing on building user interfaces 1. React introduced several key innovations that

addressed the performance and maintainability challenges of building large-scale applications. One of its most

significant contributions was the concept of the Virtual DOM (Document Object Model). By maintaining an

in-memory representation of the actual DOM, React could optimize UI updates by efficiently updating only

the parts of the DOM that had changed, leading to significant performance improvements [1]. The framework

also popularized a component-based architecture, where user interfaces are built as a composition of reusable

and self-contained UI components. This approach fostered code reusability, improved maintainability, and

facilitated better collaboration among development teams. Additionally, React introduced JSX, a syntax

extension for JavaScript that allowed developers to write HTML-like code directly within their JavaScript,

simplifying the creation and management of UI structures. React's revolutionary impact on front-end

development led to its widespread adoption across the industry.[3]

C. Vue.js (Released in 2014)

Vue.js, which was meticulously crafted by the talented developer Evan You and subsequently made publicly

Volume 6 Issue 4 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2503107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

available in the year 2014, was strategically introduced to the programming community as a progressive and

highly flexible JavaScript framework specifically designed with the intent of streamlining and enhancing the

development process of dynamic web applications that are increasingly prevalent in today’s digital landscape.

One of the most significant and distinguishing characteristics of Vue.js was its remarkable capacity for

progressive adoption, which afforded developers the unique opportunity to incrementally incorporate this

innovative framework into their existing projects without the necessity of undertaking a complete and

extensive rewrite of their codebases, thereby rendering it particularly attractive to teams that are seeking to

adopt a new framework in a gradual and measured manner that minimizes disruption to ongoing development

efforts[15]. Furthermore, the framework distinguished itself through the implementation of reactive data

binding, a concept that bears similarities to the principles underpinning AngularJS, albeit with a

fundamentally different underlying mechanism that ensures that any modifications made to the application’s

data are seamlessly reflected in real-time within the user interface view, and conversely, any changes made

in the user interface are reciprocally updated in the data, thereby facilitating a harmonious interaction between

the two[4]. The design of Vue.js incorporates a straightforward template syntax that is friendly and easy to

navigate, which significantly eases the path for developers, especially those versed in HTML and JavaScript,

empowering them to cultivate the skills necessary for proficiently applying the framework. The framework's

deliberate focus on simplicity and its gentle learning curve played a pivotal role in contributing to its growing

popularity and acceptance within the front-end development community, where it increasingly emerged as a

viable and attractive alternative to other more established frameworks that have long dominated the

landscape.[4][14][16]

D. Svelte (Initial Release around 2016, gaining traction by 2019)

Svelte, with its initial release around 2016 but gaining significant traction by 2019, presented a unique

approach to front-end development by shifting much of the framework's work from the runtime in the browser

to the compile time during the build process. Unlike traditional frameworks like React and Vue.js that include

a substantial runtime library in the final application bundle, Svelte compiles components into small,

framework-less vanilla JavaScript bundles. This approach resulted in applications with significantly smaller

bundle sizes and improved runtime performance, as less code needed to be downloaded, parsed, and executed

by the browser. Svelte's focus on performance and minimal runtime made it an attractive option for developers

prioritizing speed and efficiency[12].

The emergence of JavaScript frameworks represented a pivotal shift in front-end development. These

frameworks provided developers with structured architectures, reusable components, and enhanced tools,

leading to increased productivity and improved performance for building complex web applications. Each

framework, with its unique set of features and design philosophies, catered to different needs and preferences

within the evolving front-end landscape.

Table 1: Comparison of Key JavaScript Frameworks [7][11]

Framework Release Year Core

Concepts

Key Features Intended Use

Cases

Popularity

(Qualitative)

AngularJS ~2010 Two-way Data

Binding,

Dependency

Injection

Directives,

Controllers,

Services

Complex,

data-heavy

applications

High (but

declining)

React 2013 Virtual DOM,

Component-

Based

Architecture

JSX,

Unidirectional

Data Flow,

Hooks

(introduced in

2019)

Single-Page

Applications,

complex UIs

Very High

Vue.js 2014 Progressive

Adoption,

Reactive Data

Binding

Simple

Template

Syntax,

Components,

SPAs,

interactive

interfaces,

progressive

High

(growing)

Volume 6 Issue 4 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2503107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

Vuex (state

management)

enhancement

Svelte ~2016

(traction in

2019)

Compile-to-

JavaScript

Minimal

Runtime, High

Performance,

Components

Performance-

critical

applications,

smaller bundle

sizes

Medium

(growing)

IV. THE EVOLUTION OF FRONT-END TOOLING

The rise of JavaScript frameworks was accompanied by a significant evolution in front-end tooling, aimed at

automating development tasks, optimizing code, and managing the increasing complexity of web applications.

A. Build Tools

The landscape of JavaScript build tools underwent a substantial transformation in the years leading up to

2020. Grunt, released around 2012, emerged as one of the early general-purpose task runners. It allowed

developers to automate repetitive tasks such as code minification, compilation, unit testing, and linting

through a configuration-heavy approach using JSON files 24. Grunt boasted an extensive ecosystem of plugins

contributed by the community, enabling a wide range of automation capabilities. Following Grunt, Gulp was

introduced around 2013, offering a faster, code-over-configuration paradigm[5]. Gulp utilized streams to

process files, allowing for more efficient task execution and a more intuitive JavaScript-based approach to

defining build tasks. It generally provided performance improvements over Grunt due to its streaming

nature[5][8].

Around the same time, Webpack was initially released (around 2012) but gained significant popularity around

2015-2016, evolving into a powerful module bundler. Unlike task runners that primarily automated discrete

operations, Webpack focused on managing dependencies between different parts of a JavaScript application

and bundling them into optimized static assets[9]. It could analyze dependencies, create dependency graphs,

and offered advanced features like code splitting (dividing the application code into smaller chunks for

improved loading performance), tree shaking (removing unused code), and hot module replacement (updating

modules in the browser without a full page reload). While incredibly powerful and flexible, Webpack was

also known for its complexity and the need for significant configuration to tailor it to specific project

requirements[11][9]. In 2017, Parcel was released, aiming to simplify the build process by offering a zero-

configuration bundler focused on ease of use and speed. Parcel automatically resolved dependencies and

provided built-in support for a wide range of file types, reducing the need for complex configuration files. It

also boasted faster bundling times compared to some of its predecessors[11]. These build tools played a crucial

role in the front-end development workflow by automating tasks, optimizing code for production, and

efficiently managing the modular structure of modern web applications.[13]

B. Package Management

The emergence of Node.js around 2009 marked a paradigm shift in front-end development by enabling

JavaScript to be executed outside the confines of a web browser.1 This capability paved the way for the

development of a rich ecosystem of tools and libraries written in JavaScript, including the build tools

discussed earlier. Arguably the second most impactful innovation from the Node.js ecosystem was npm

(Node Package Manager), released around 2010. npm served as a central repository for JavaScript packages,

allowing developers to easily share, discover, and reuse code. It drastically simplified the process of installing,

updating, and managing dependencies in front-end projects , fostering a culture of code reuse and accelerating

the development of client-side technologies. In 2016, Yarn was introduced as an alternative package manager,

aiming to address some of the performance and security concerns associated with npm. Yarn offered features

like faster installation times through caching and parallel downloads, as well as a deterministic installation

process ensured by a lockfile. The advent of Node.js and npm fundamentally altered front-end development,

creating a robust and vibrant ecosystem for tooling and dependency management, mirroring the advancements

that had long been established in back-end development environments.

V. SHIFTING ARCHITECTURAL PATTERNS AND PRACTICES

The evolution of front-end development up to January 2020 was not limited to tools alone; significant shifts

Volume 6 Issue 4 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2503107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

also occurred in the architectural patterns and practices adopted by developers.

A. Component-Based Architecture

The adoption of component-based architecture steadily increased, becoming a dominant paradigm for

structuring front-end applications. This approach involved breaking down the user interface into smaller, self-

contained, and reusable components. The benefits of this architecture were numerous, including improved

modularity, enhanced code reusability, easier maintenance, and better scalability of UI components.

Frameworks like React, Vue.js, and Angular strongly encouraged and facilitated the adoption of component-

based architecture through their core design principles and features.[6]

B. State Management

Managing the application state became increasingly crucial as front-end applications grew in complexity.

Several libraries emerged to provide structured solutions for this challenge. Redux, released around 2015,

gained significant traction as a centralized state management solution, particularly within the React

ecosystem, for handling complex data flows in large applications. Redux introduced concepts like a single

global store, actions to describe state changes, and reducers to specify how the state should be updated in

response to actions. Similarly, Vuex, also released around 2015, provided a dedicated state management

solution specifically tailored for Vue.js applications, incorporating concepts like state, mutations (for

synchronous state changes), actions (for asynchronous operations), and getters (for derived state). Towards

the end of this period, React introduced its own lighter-weight alternatives for state management, notably the

Context API and hooks (useState and useReducer), with the release of React 16.8 in early 2019.[14]

C. Continuous Integration and Continuous Delivery (CI/CD)

The adoption of Continuous Integration and Continuous Delivery (CI/CD) practices began to gain

momentum in front-end development as teams sought to streamline their workflows and deliver updates more

frequently and reliably. CI/CD involved the automation of the software development lifecycle, particularly

the processes of building, testing, and deploying code changes. This approach allowed for early detection of

errors, improved code quality, and faster feedback loops. Several tools facilitated CI/CD in front-end

development, including established platforms like Jenkins, Travis CI, and CircleCI, as well as newer entrants

like GitLab CI and GitHub Actions, which began to emerge as a significant player around 2019.

D. Testing in Front-End Development

Testing played an increasingly vital role in front-end development workflows, with a growing recognition of

the importance of ensuring the reliability and quality of user interfaces. Developers employed various testing

methodologies, including unit testing (testing individual components or functions), integration testing (testing

the interaction between different parts of the application), and end-to-end testing (simulating real user

scenarios across the entire application flow) . A range of testing tools and frameworks gained popularity, such

as Jest, Mocha, and Jasmine for unit testing; React Testing Library and Vue Test Utils for component testing;

and Cypress, Selenium, and Puppeteer for end-to-end testing.

E. Mobile-First Design

The principle of mobile-first design gained significant traction as mobile devices became the primary means

of accessing the internet for a growing number of users 1. This approach advocated for designing and

developing web applications starting with the mobile experience (smaller screens) and then progressively

enhancing the design for larger screens, such as tablets and desktops. Responsive web design techniques,

utilizing flexible layouts, responsive images, and media queries, became essential for ensuring that websites

could adapt seamlessly to different screen sizes and provide an optimal user experience across a variety of

devices.[6]

F. Accessibility

There was an increasing awareness and emphasis on accessibility in front-end development, with developers

recognizing the importance of creating inclusive web experiences for users with disabilities. Key accessibility

guidelines and best practices included using semantic HTML to convey meaning to assistive technologies,

ensuring proper keyboard navigation for users who cannot use a mouse, providing descriptive alternative text

for images for screen reader users, and ensuring sufficient color contrast for readability. The Web Content

Accessibility Guidelines (WCAG) emerged as a crucial standard providing a framework for creating more

accessible web content.

G. Security Best Practices

As web applications handled more sensitive user data, security became an increasingly important

Volume 6 Issue 4 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2503107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

consideration in front-end development. Developers became more aware of common front-end vulnerabilities,

such as Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF). Emerging best practices included

implementing robust input validation to prevent malicious data injection, ensuring secure data transmission

over HTTPS, and avoiding the use of inline scripts that could be exploited.

These shifts in architectural patterns and practices reflected a maturing of the front-end development

discipline, with a growing focus on building applications that were not only functional but also scalable,

maintainable, performant, user-friendly, and secure.

VI. PERFORMANCE CONSIDERATIONS

Front-end performance became an increasingly critical aspect of web development as user expectations for

fast and responsive applications grew. Developers employed various tools and techniques to optimize the

performance of their applications. Code minification and compression were used to reduce the size of

JavaScript and CSS files, leading to faster download times. Image optimization techniques, such as

compressing images and using appropriate file formats, along with lazy loading (loading images and other

assets only when they are needed), helped to improve page load speeds. Browser caching was leveraged to

store static assets locally, reducing the need to download them on subsequent visits. Build tools like Webpack

introduced features like code splitting and tree shaking to further optimize the delivery of JavaScript code.

The performance characteristics of different JavaScript frameworks, such as React, Angular, and Vue, were

also a subject of analysis and benchmarking within the development community. The increasing focus on

performance underscored its importance in delivering a positive user experience and influenced the evolution

of both front-end frameworks and the tooling used to build them.[13][10]

VII. CONCLUSION

The domain of front-end tooling and workflows experienced a notable transformation in the preceding years.

This progression commenced with fundamental technologies such as HTML, CSS, and JavaScript, which,

despite their significant capabilities, imposed certain constraints on the construction of intricate, interactive

applications. The advent of JavaScript frameworks including AngularJS, React, Vue.js, and Svelte heralded

a pivotal era, furnishing developers with systematic methodologies, heightened productivity, and substantial

enhancements in performance. This period also observed the emergence of advanced build tools such as

Grunt, Gulp, Webpack, and Parcel, which automated essential development operations and optimized the

delivery of code. The introduction of Node.js and npm brought about a revolution in package management,

nurturing a dynamic ecosystem of reusable code and utilities.

Architectural paradigms transitioned towards component-based configurations, advocating for modularity and

maintainability. Solutions for state management, exemplified by Redux and Vuex, offered organized

methodologies for managing application data, while Continuous Integration and Continuous Deployment

(CI/CD) practices refined the procedures of integrating, testing, and deploying front-end code. Testing

paradigms matured, as developers increasingly embraced unit, integration, and end-to-end testing to guarantee

the quality of code. The escalating significance of mobile devices led to the prevalent adoption of mobile-first

and responsive design tenets. Moreover, the heightened awareness of accessibility and security issues

culminated in the implementation of best practices aimed at fostering inclusive and secure web applications.

The emphasis on performance optimization permeated every facet of front-end development, propelling the

adoption of diverse techniques and influencing the design of frameworks and tools.

By the year 2020, front-end development had evolved into a sophisticated and multifaceted domain,

characterized by a comprehensive selection of tools, frameworks, and best practices. The advancements

achieved during this timeframe established a robust foundation for the ongoing innovation and complexity

that would define the field in the ensuing years.innovation and complexity that would define the field in the

ensuing years.

REFERENCES:

1. History of front-end frameworks - LogRocket Blog, https://blog.logrocket.com/history-of-frontend-

frameworks/

2. Web Development Evolution from the 2000s' to 2020 | Jellyfish.tech, https://jellyfish.tech/blog/web-

development-evolution-from-2000s-to-2020/

https://blog.logrocket.com/history-of-frontend-frameworks/
https://blog.logrocket.com/history-of-frontend-frameworks/
https://blog.logrocket.com/history-of-frontend-frameworks/
https://jellyfish.tech/blog/web-development-evolution-from-2000s-to-2020/
https://jellyfish.tech/blog/web-development-evolution-from-2000s-to-2020/

Volume 6 Issue 4 @ 2020 IJIRCT | ISSN: 2454-5988

IJIRCT2503107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

3. The Super-Brief History of JavaScript Frameworks For Those Somewhat Interested,

https://dev.to/_adam_barker/the-super-brief-history-of-javascript-frameworks-for-those-somewhat-

interested-3m82

4. Top VueJS Boilerplates for 2020 | by Shanika Wickramasinghe | Bits and Pieces,

https://blog.bitsrc.io/10-top-vuejs-boilerplates-for-2020-c70192003d20

5. Team GO Rocket Grunt (Trainer class)/Pokémon change history/2019 - Bulbapedia,

https://bulbapedia.bulbagarden.net/wiki/Team_GO_Rocket_Grunt_(Trainer_class)/Pok%C3%A9mo

n_change_history/2019

6. frontend-dev-bookmarks/architecture/design-patterns.md at master - GitHub,

https://github.com/dypsilon/frontend-dev-bookmarks/blob/master/architecture/design-patterns.md

7. Frontend Evolution timeline (1995-2019) - GitHub, https://github.com/ManzDev/frontend-evolution

8. Grunt (software) - Wikipedia, https://en.wikipedia.org/wiki/Grunt_(software)

9. Webpack - Wikipedia, https://en.wikipedia.org/wiki/Webpack

10. Concepts - webpack, https://webpack.js.org/concepts/

11. The Hitchhiker's guide to the modern front end development workflow - marcobotto.com,

https://marcobotto.com/blog/the-hitchhikers-guide-to-the-modern-front-end-development-workflow/

12. What is new with Angular in 2020? - KITRUM, https://kitrum.com/blog/angular-in-2020/

13. krausest/js-framework-benchmark: A comparison of the performance of a few popular javascript

frameworks - GitHub, https://github.com/krausest/js-framework-benchmark

14. Comparing Vuex and Redux by developing an application - JavaScript in Plain English,

https://javascript.plainenglish.io/similarities-and-differences-between-vuex-and-redux-by-

developing-an-application-be3df0164b22

15. Persisting user authentication with Vuex in Vue | by Netanel Basal | Frontend Weekly,

https://medium.com/front-end-weekly/persisting-user-authentication-with-vuex-in-vue-

b1514d5d3278

16. Empirical Studies on Web Accessibility of Educational Websites: A Systematic Literature Review -

RUA,https://rua.ua.es/dspace/bitstream/10045/106981/1/Campoverde-

Molina_etal_2020_IEEEAccess.pdf

https://dev.to/_adam_barker/the-super-brief-history-of-javascript-frameworks-for-those-somewhat-interested-3m82
https://dev.to/_adam_barker/the-super-brief-history-of-javascript-frameworks-for-those-somewhat-interested-3m82
https://dev.to/_adam_barker/the-super-brief-history-of-javascript-frameworks-for-those-somewhat-interested-3m82
https://dev.to/_adam_barker/the-super-brief-history-of-javascript-frameworks-for-those-somewhat-interested-3m82
https://blog.bitsrc.io/10-top-vuejs-boilerplates-for-2020-c70192003d20
https://blog.bitsrc.io/10-top-vuejs-boilerplates-for-2020-c70192003d20
https://blog.bitsrc.io/10-top-vuejs-boilerplates-for-2020-c70192003d20
https://bulbapedia.bulbagarden.net/wiki/Team_GO_Rocket_Grunt_(Trainer_class)/Pok%C3%A9mon_change_history/2019
https://bulbapedia.bulbagarden.net/wiki/Team_GO_Rocket_Grunt_(Trainer_class)/Pok%C3%A9mon_change_history/2019
https://bulbapedia.bulbagarden.net/wiki/Team_GO_Rocket_Grunt_(Trainer_class)/Pok%C3%A9mon_change_history/2019
https://bulbapedia.bulbagarden.net/wiki/Team_GO_Rocket_Grunt_(Trainer_class)/Pok%C3%A9mon_change_history/2019
https://github.com/dypsilon/frontend-dev-bookmarks/blob/master/architecture/design-patterns.md
https://github.com/dypsilon/frontend-dev-bookmarks/blob/master/architecture/design-patterns.md
https://github.com/dypsilon/frontend-dev-bookmarks/blob/master/architecture/design-patterns.md
https://github.com/ManzDev/frontend-evolution
https://github.com/ManzDev/frontend-evolution
https://en.wikipedia.org/wiki/Grunt_(software)
https://en.wikipedia.org/wiki/Grunt_(software)
https://en.wikipedia.org/wiki/Webpack
https://en.wikipedia.org/wiki/Webpack
https://webpack.js.org/concepts/
https://webpack.js.org/concepts/
https://marcobotto.com/blog/the-hitchhikers-guide-to-the-modern-front-end-development-workflow/
https://marcobotto.com/blog/the-hitchhikers-guide-to-the-modern-front-end-development-workflow/
https://marcobotto.com/blog/the-hitchhikers-guide-to-the-modern-front-end-development-workflow/
https://kitrum.com/blog/angular-in-2020/
https://kitrum.com/blog/angular-in-2020/
https://github.com/krausest/js-framework-benchmark
https://github.com/krausest/js-framework-benchmark
https://javascript.plainenglish.io/similarities-and-differences-between-vuex-and-redux-by-developing-an-application-be3df0164b22
https://javascript.plainenglish.io/similarities-and-differences-between-vuex-and-redux-by-developing-an-application-be3df0164b22
https://javascript.plainenglish.io/similarities-and-differences-between-vuex-and-redux-by-developing-an-application-be3df0164b22
https://javascript.plainenglish.io/similarities-and-differences-between-vuex-and-redux-by-developing-an-application-be3df0164b22
https://medium.com/front-end-weekly/persisting-user-authentication-with-vuex-in-vue-b1514d5d3278
https://medium.com/front-end-weekly/persisting-user-authentication-with-vuex-in-vue-b1514d5d3278
https://medium.com/front-end-weekly/persisting-user-authentication-with-vuex-in-vue-b1514d5d3278
https://medium.com/front-end-weekly/persisting-user-authentication-with-vuex-in-vue-b1514d5d3278
https://rua.ua.es/dspace/bitstream/10045/106981/1/Campoverde-Molina_etal_2020_IEEEAccess.pdf
https://rua.ua.es/dspace/bitstream/10045/106981/1/Campoverde-Molina_etal_2020_IEEEAccess.pdf

