
Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Building Cloud Native Applications: Best Practices

for AWS-Driven Microservice and Containerized

Architectures

Sai Krishna Chirumamilla

Software Development Engineer

Dallas, Texas, USA.

saikrishnachirumamilla@gmail.com

Abstract:

Today, the notion of cloud-native applications has appeared to be one of the main trends due to the

digital transformation of all spheres of human life and the constant demand for elastic, reliable, and

inexpensive applications. The purpose of this paper is to identify the best practices for building and

running Cloud-Native applications with special emphasis on Microservices and Containers on AWS.

It starts with educating readers about cloud-native architecture, whereas the best practices such as

microservice and containers help to build a more flexible and scalable application. The paper goes

straight to the architectural points of view. Briefly, it describes several AWS tools and services, such

as Amazon ECS, EKS, Lambda, and API Gateway important for employing containerized

deployment. It also focuses on the issues and approaches connected with orchestration, monitoring,

protection, and expenditures when working with AWS environments. Lastly, from several case

studies, the authors discuss the effectiveness of achieving functional, system improvement, scalability,

and cost-efficient solutions. A conclusion re-emphasizes the necessity of using AWS-driven

architectures for constructing future-proof cloud-native systems where this change of needs is

profoundly seen.

Keywords: Cloud-native applications, AWS, Microservices, Containerization, Amazon ECS, Amazon

EKS, AWS Lambda, Scalability, Orchestration, DevOps.

1. INTRODUCTION

Applications that are designed, built, and run for the cloud, cloud-native applications are a new way in

which applications are constructed in the modern context. These applications are designed to be run on the

cloud and take advantage of cloud characteristics such as scalability, reliability, and flexibility. [1-3] Some

of the specific approaches within cloud-native development include dependency on micro-services and

containers, significant focus on DevOps and CI/CD pipelines, and overall increasing usage in that they

allow organizations to split applications into independently deployable components. This way, it can be

clearly seen how cloud environments such as AWS, while using cloud-native platforms, can be performance

optimized while maintaining efficient scalability and cost models.

1.1. The Role of Containerization in Modern Development

Containerization has now blossomed into one of the most fundamental and essential patterns for developing

software in today’s world and deploying applications. The concept of using containers as a lightweight

solution to establish consistent environments for applications and their dependencies ensures that developers

get flexibility, enhanced productivity, and better. Adaptability at every stage of the application development

life cycle. This section builds on the conceived significance of containerization in present development and

explores the subject in detail to demonstrate its importance in different areas.

• Enhanced Portability and Consistency: Out of all the containerization, one of the most significant

benefits is the homogeneity of the environment at different stages of development and deployment.

Containers bundle an application with all necessary libraries, dependencies and configurations to ensure that

it is going to behave in a certain way regardless of the environment it is run in. This portability implies that

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

developers need not develop applications on a special workstation and perform testing and other processes

on other workstations expecting different results. Therefore, as a consequence of containerization, it reduces

cases of what is commonly referred to as ‘it works on my machine’, which is a much bigger problem when

it comes to deployment as well as future debugging.

Figure 1: The Role of Containerization in Modern Development

• Streamlined Development and Deployment Processes: Containerization supports a microservices

architecture, which ultimately enhances development and deployment cycles. One such model is the

division of applications and services into smaller, severable, or loosely coupled services. All these services

can be containerized and thus can be replaced individually without requiring the containerization of the

entire application. This helps reduce the time for the release cycle and the time to market. Besides, it is

possible to start or shut containers in several hours, days, or weeks depending on necessities, implementing

willingness integration and deployment simplicity. Such agility is particularly useful for development

environments, which are characterized by fast cycle times and frequent updates.

• Improved Resource Utilization: Containers are lightweight and even share many underlying OS

kernel resources; hence, they consume less memory than normal VMs do. This efficiency means that

numerous containers can run on a single host without incurring the overhead of the full operating system

installation, hence leading to optimized infrastructure costs. By optimizing resource use, organizations are in

a position to host many programs on available equipment without straining the organization to acquire more

hardware to accommodate increasing numbers of applications. Such efficiency is good, especially in cloud

facilities, where resource usage determines the cost of operations.

• Isolation and Security: Containerization provides the level of isolation that improves security

within applications. Each container executes in the environment of the host system that is different from the

other containers on this particular host. This isolation reduces the probability of exposures across different

containers, which brings improvement to the protection of applications. Further, there are features or tools

such as Kubernetes that offer container orchestration to manage, control, and secure containers. While using

a container, enforcing strong security policies and closely observing the behavior of a container will help an

organization to better protect its applications from threats and open risks.

• Simplified Scaling and Management: Containers make horizontal scalability possible and thus

help organizations be ready to adapt to change quickly. When there is more traffic in service, other

containers can be instantiated since there is a high level of flexibility in the launch of containers. Keeping

this elasticity in mind is very important, especially due to this modern application’s requirement to be able

to grow or shrink according to the number of users using it. Container orchestration is designed to manage

containerized applications, and tasks, including load balancing, scaling, and automated recovery, are carried

out. From a technical perspective, it brings operational efficiency; in terms of workload, it guarantees

applications run and stay responsive.

• Microservices Architecture support: Containerization is well integrated with microservice

architecture, an architectural style built from multiple loosely coupled services, designed to be

independently developed, tested, implemented, and updated. Every microservice can be placed into a

container; this way, it is straightforward to develop, release, and reuse dependencies. This flexibility not

Enhanced
Portability and

Consistency

Streamlined
Development and

Deployment
Processes

Improved Resource
Utilization

Isolation and
Security

Simplified Scaling
and Management

Microservices
Architecture

support

Facilitating DevOps
Practices

Future-Proofing
Applications

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

only improves the velocity but also lets development teams use as many technologies and frameworks for

different services as they want. For instance, one team might decide to build one microservice using Node.js

while the other uses Python, all within their own containers. It creates flexibility and enables organizations

to use the most effective solutions to accomplish certain objectives.

• Facilitating DevOps Practices: It is impossible to discuss containerization use and adoption as a

separate subject from DevOps, as these two concepts are very interrelated. Containers make the DevOps

process more efficient, as they create homogenous environments to work with, so developers can transfer

containerized applications to operations departments without encountering problems related to different

environments. Moreover, by container orchestration tools, CI/CD pipelines are used for testing and

deployment, although it is an essential aspect of DevOps solutions.

• Future-Proofing Applications: This means that applications should be capable of supporting

current and emerging technologies in technology trends and tolls. Containerization has a level of future-

proofing in its strategic allowances as teams can gradually adapt to new technology by contemplating it as a

service. For example, new programming languages, frameworks, and databases can be implemented

incrementally as containers. Such flexibility is useful when it comes to the survival of an organization in the

continually evolving business environment and cultivates an atmosphere of novelty.

1.2. Importance of Microservices and Containers in Modern Architectures

Microservices and containerization have become a recent phenomenon in modern software development due

to issues around flexibility, expandability, and sustainability. This architectural change facilitates the

development of complex applications that can be created and deployed in small modules. [4,5] In the

following section, we discuss today’s key structures, more specifically, microservices and containers,

outlining their advantages as well as consequences.

• Modularity and Flexibility: Microservices architecture is a set of fine-grained software

components that can be best described as methods or routines that perform a particular task within an

application. This modularity enables teams to build, integrate, and launch certain parts that might not

necessarily affect the entire application. Therefore, teams can work in parallel with different services, and

the total development is sped up along with a decrease in the time to market. Also, this modularity favors

technology pluralism since developers can choose one proper technology stack per microservice. For

example, one microservice can have Node.js as the optimal performance and another Python for its strong

data handling libraries. This openness encourages the development process and enables teams to use the

most appropriate tools to solve different tasks, thus promoting the increase of the application’s utility.

• Scalability: Microservices and containerization greatly improve the application’s scalability as a

result of flexibility. Due to the possibility of scaling individual parts of an application depending on the load

they receive, microservices can easily control resources and costs. Since all the parts of the application are

built as individual components in the microservice architecture, it is possible to scale only the appropriate

components that correspond to the workload requirements. This scaling process is shown with currently

available container orchestration tools such as Kubernetes, which automatically tries to scale the

applications based on the current consumption of resources. Organizations can then appropriately react to

increased or decreased user traffic without incurring additional expenses for adding and proportioning more

resources to the architecture.

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

Modularity and Flexibility

Scalability

Resilience and Fault Isolation

Faster Time to Market

Enhanced Collaboration

Resource Efficiency

Simplified Management and Monitoring

Future-Proofing Applications

Figure 2: Importance of Microservices and Containers in Modern Architectures

• Resilience and Fault Isolation: Coping with change is one of the fundamental advantages of

microservices and the use of containers. Using the microservices model, it is realized that when one service

is not working, this does not affect the whole system because other services can operate as usual. As much

as the detailed views are useful for application development and diagnostics, it is this kind of fault isolation

that is vital to keeping the application up and running and, increasingly, users happy. Furthermore, container

orchestration platforms also offer self-healing features that deal with the situation when the container has

been killed and can restore it or start a new instance. This decreases the time that applications are offline and

makes cloud-native applications very reliable. Thus, repeated errors can be tolerated within an

organization’s performance context, continuing to support the confidence of users in the operation of the

application in question.

• Faster Time to Market: When this is coupled with microservices and utilization of containers, the

time that it will take to get out new features to the market will greatly be reduced. Microservices allow for

easy utilization of CI/CD as a much simpler means of delivering updates and new features while not

affecting other services and their functions. This rapid iteration capability makes it possible for

organizations to adapt within a short span as a result of market shifts and or feedback from users. Moreover,

with the containerization of applications, it becomes easier to create test environments that are typical and

can be repeated within organizations. This consistency makes it easy to regression test the system and helps

the developers find problems that need to be fixed before deployment. Apart from increasing productivity,

the optimized path of development also helps organizations maintain the possibility to adapt to the constant

changes in the competitive environment.

• Enhanced Collaboration: Microservices also promote collaboration with development and

operations teams in a way that naturally monitors DevOps. This architectural approach fosters the creation

of end-to-end accountable teams for certain services from design to implementation and ongoing

management. This kind of ownership ensures that people are held accountable and also reorganizes team

structures to minimize fragmentation. Thirdly, the architecture based on the shared responsibility model

characteristic for microservices also guarantees that developers and Ops teams are going to participate in the

iterative process of the application improvement. By incorporating the method, the exchange of information

and idea sharing between members is improved, hence increasing the production of better software and

solving problems more creatively.

• Resource Efficiency: Containerization, especially, improves the use of resources, which leads to

decreased cost of operation. Most containers are small, and all can reside on the same host as they have

equal access to the OS. In such a way, applications run at a higher density due to efficient resource

utilization compared with the traditional virtualization of machines. Consequently, business organizations

are capable of benefiting from effective Cloud resource usage and minimizing costs. Moreover, they can be

quickly scaled up or down to accommodate changing workload requirements so that more containers can be

easily initiated to meet demand as the workload increases and terminated once the number drops. Another

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

advantage of this kind of resource capability is that it makes sure that the organization has to buy only the

competency level they require and therefore, makes the whole process efficient as well as economical.

• Simplified Management and Monitoring: In general, both microservices and containers help to

maintain the organization’s centralized control of applications, even with complexity. While mainstream

containerization is performed using applications such as Kubernetes and Docker Swarm, these simplify the

management of the applications by providing a single window to the implementations of the overall

containerized solutions of the organizations. It helps to centralize the work processes, which, in turn, makes

teamwork more effective as everyone can work at a higher level. Moreover, microservices architectures are

more resilient to increased monitoring, which allows getting more insights into the performance of

particular services. Such a level of application partitioning enables quick and precise detection of

performance problems or components with inefficiencies to address within teams to optimize utilization and

enhance user experience.

• Future-Proofing Applications: All the same, microservices and containers enable organizations to

prepare their applications for the future due to advancements in technology. Microservices’ structure also

means that if a particular part needs to be changed or substituted, it is not required to redesign the whole

application. This is important, especially for dealing with new technologies that comer up or changes in the

business environment. In addition, through the help of containerization, solutions that will be powered by

artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT) may easily be

accommodated into applications. In this way, organizations can open up possibilities for growing and

deploying new services based on these technologies to respond to their needs and improve their advantage

over competitors; developers can guarantee that their applications of these technologies are up to the

demands of the future.

2. LITERATURE SURVEY

2.1. Evolution of Cloud-Native Architectures

The idea of cloud-native applications has also evolved drastically during the last decade, slowly shifting

from the monolithic application architecture model towards more efficient approaches. Those first

monolithic applications were based on tightly coupling the components, which led to issues with scalability,

maintainability, and deployment complexity. The appearance of Service-oriented Architectures (SOA) tried

to resolve the issue since it presupposes modularity; at the same time, it poses distinct challenges connected

with service management and service interaction. [6-10] Most enterprise workloads run through cloud

computing. Infrastructure as a Service and Platform as a Service have extended cloud-native architectures.

After containers and various orchestration tools like Kubernetes, developers were given a way to use tools

that would let them concentrate on application rather than hardware resources. A recent literature review

shows that there is a growing trend towards serverless architecture, where server management is entirely

done away with. Microservices where technologies like AWS Lambda are used enable a developer only to

write code to be run when a certain event happens thus bringing down the server deployment and

operational costs drastically.

2.2. Microservices in Practice

Microservices have recently become one of the most popular architectural styles that allow for building

highly scalable and resilient applications in the cloud. This way, each microservice can function without the

need to tightly couple with the other components using an HTTP/REST or a message broker system.

Autonomy, in this way, makes it easier to scale because organizations can scale parts of a service based on

load demands, hence increasing efficiency and resource utilization. Various published papers and articles

prove that companies integrating microservices in the cloud environments, particularly in Amazon AWS,

have noted the improvement in the operational tempo, fewer instances of disruptions in services, and higher

flexibility of developed application architectures and the procedures linked with their changes. Moreover,

resources like Amazon API Gateway also assume an important function in microservice architecture

because they act as a front door and provide a means for microservices to share information. This is

actualized by AWS Lambda complementing the microservices model by supporting event-based application

launches where single microservices can run under certain triggers or occurrences. These technologies are

not only helping to improve the development process but also assist with creating a more responsive

application architecture.

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

2.3. Containerization and Orchestration Tools

Dockerization has revolutionized the development and deployment of applications by packaging the

application code, dependencies, and configuration into lightweight, portable containers. Docker has led this

revolution by enabling developers to have a consistent environment across the development cycle:

development, testing, and production. This consistency is important to eliminate the cases that most

developers use affectionately as “it runs on my computer”. Due to the challenge of managing containers at

scale, Kubernetes has become a go-to solution for container scheduling, deploying, scaling, and managing

containers inside clusters. AWS responds to this by providing Amazon Elastic Kubernetes Service (EKS),

which automates the deployment of Kubernetes. Also, Amazon Elastic Container Service (ECS) is another

completely managed orchestration service that helps developers to operate and scale Docker containers in

AWS without configuring the underlying infrastructure. It is in this sense that integrating containerization

and orchestration tools greatly boosts the effectiveness and elasticity of application deployments in cloud

systems.

2.4. AWS Managed Services for Cloud-Native Development

AWS encapsulates a broad range of services known as managed services that give a boost to cloud-native

applications. For containerized applications, Amazon ECS and EKS are widely used to manage Docker

containers to help organizations concentrate more on application development rather than infrastructure.

While the deployment automation using BOTO3 makes it easier to manage and deploy applications, AWS

Fargate, a serverless compute engine for containers, makes it easier to run containers as well as take

operational overhead out of the developer’s hands. In addition, AWS Lambda provides a cornerstone of

serverless solutions, which makes it possible for developers to execute code for specific events with no need

to deal with servers. This approach also adds scalability as resources are acquired automatically depending

on the application’s traffic, and the cost is reduced as applications remain responsive and do not bog down

due to usage. Overall, the managed services provided by AWS enable organizations to develop scalable,

efficient, and cheap cloud capabilities applications while shedding a significant workload of infrastructure

management.

3. METHODOLOGY

3.1. Architecture Design

Microservices Architecture: The application can be broken down into numerous isolated modules that can

be built, deployed, and, if necessary, [11-14] scaled independently.

Figure 3: Architecture Design

• Microservices Architecture: In a microservices architecture, a monolithic application is

decomposed into a set of independent microservices where each of them is responsible for a particular

business capability. These services are loosely coupled; this means that they can be independently built,

deployed, and expanded without impacting the rest of the application. This disentanglement enhances

fluidity as several services can be worked on concurrently, and application upgrades can occur without

impact on availability. Another area that gains improvement with microservices is fault tolerance; if one

service fails, the rest of the system does not collapse. Other microservices, such as Amazon EKS and ECS

Microservices Architecture

Containerization

Service-Oriented Communication

Event-Driven Design

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

for scaling these microservices, can more easily be managed due to inherent compatibility with other AWS

tools.

• Containerization: Containerization is the process by which an application and all the associated

elements are placed in a structure called a container, commonly with Docker. Containers provide a reliable

way of managing applications because all their dependencies are packed in one place that can be easily

replicated across various stages of development, testing, and production, excluding the “it works on my

machine” problem. In the cloud-native architecture, containers play a significant role in handling

microservices since they help in deployment, scaling and updating. It provided managed container services

Amazon ECS and Amazon EKS, where container orchestration and scaling are made easy by AWS. Such

services provide the ability to deploy, run, and remain consistent with the interface of microservices in

different environments without depending on the actual manual running process.

• Service-Oriented Communication: Communication in MS-based architecture occurs between the

microservices where services use application programming interface APIs, most often HTTP/REST or

messaging. Amazon API Gateway is particularly useful in this architecture since all APIs are served through

this single entry point. It allows exposing microservices loop, at the same time, handling request validation,

rate limiting, and authorization, to other services or clients. API Gateway also makes it easier to handle

multiple versions of the same microservices as a way of making sure that services can change without

necessarily affecting the whole structure. That’s why using the API-first approach allows for maintaining

flexibility, scalability, and authoritative decision over the interaction between microservices.

• Event-Driven Design: The specific consideration to be addressed in cloud-native application

development includes event-driven architecture for the processing of real-time data. In this design, services

interact and trigger custom events in an asynchronous manner that allows flexible structure and decoupled

relationships in the system. AWS Lambda, being the pearl of serverless computing, stands up to the

challenge of such event-driven cases. Lambda functions are triggered based on the events that are generated

by other AWS services, for example, S3 bucket, DynamoDB update, or API Gateway calls. This makes it

possible for services to consume data without delay, handle workload changes by adjusting the number of

resources needed or by dispensing them with unneeded ones, and continuously eliminate the need for

running servers. Indeed, being a serverless solution, AWS Lambda is cost-optimized as the users have to

pay for the amount of time that the function takes for its execution.

3.2. Orchestration with AWS Tools

• Amazon ECS: Amazon ECS is an AWS product, which is a fully managed container orchestration

service for Docker containers. ECS automates a cluster, service discovery, and scaling of containerized

applications, which makes the work of deployment and management easy. It is tightly integrated with AWS

Fargate, so developers can run containers without worrying about servers at all. This serverless approach

with Fargate also allows for containerized workloads and, thus, precise resource allocation improvements

while using Fargate instead of having to coordinate and manage EC2 instances. ECS also possesses

Application Load Balancers (ALB) that enable a proper distribution of loads between the services and auto-

scaling according to presented loads, improving the system’s flexibility and availability.

• Amazon EKS: AWS Amazon Elastic Kubernetes Service (EKS) now lets you in effect, run a

Kubernetes cluster on top of AWS. EKS allows the developer to use the Kubernetes tooling and model

natively yet have AWS manage many of the lower-level tasks, such as a control plane and managing nodes.

It can easily be used with other AWS services, including IAM, VPC, and Cloud Watch, where it offers

enhanced security and networking options in Kubernetes pods. As Kubernetes is self-managed as well as

AWS Fargate integrated, EKS provides the option to select between infrastructures-based services and

serverless services. That enables organizations to use KKP for developing and managing highly available,

scalable and resilient Kubernetes applications without a need to spend significant time and focus on the

management of Kubernetes-type solutions.

3.3. Continuous Integration/Continuous Deployment (CI/CD)

• AWS Code Pipeline for CI/CD Orchestration: AWS Code Pipeline is a serverless and fully

managed application that completes the steps of the CI/CD pipeline, pulling new code and enabling the

building, testing, and deployment of new versions of the applications continuously. [15-18] In general, Code

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 8

Pipeline utilizes workflow for CI and CD using AWS services as well as third-party tools in the cloud-

native paradigm. It is quite moldable and can be made to be multistaged, such as source, build, test, and

deployment, regarding exposing the form of an application. Considering that Code Pipeline automatically

triggers from changes in the source code repository, new code is perpetually tested as well as deployed,

enhancing the speed and efficiency of Software Releases.

• Source Control with Git: Git, the most used system of version control, is used in the AWS Code

Pipeline for managing source code. AWS Code Pipeline can be related to AWS Code Commit, GitHub, and

Bitbucket; for this relationship, it scans for any change in the code. Every time a developer makes a commit

and pushes code, Code Pipeline starts the pipeline execution, which implies building and testing. This

makes certain that the newest code is being always worked on, creating a basis for continuous integration

and integration of development cycles among various development teams. Effective handling of code

changes makes use of Git in providing for version control, possibilities for a rollback, and the promotion of

visibility, which are basic to large-scale cloud-native apps.

• Automated Builds and Tests with AWS Code Build: AWS Code Build is a highly innovative,

fully automated service that produces builds of code and tests that make the CI process seamless. Successful

changes in the repository are when Code Pipeline initiates Code Build, which builds the source code, tests

the units, and generates artifacts for deployment. Code Build provides excellent versatility where multiple

builds can run simultaneously within a single project, greatly increasing the speed of even complex

applications. It supports multiple languages and frameworks, which makes it quite versatile for different

kinds of projects. Code Build automates aspects of the build and testing processes, contributing to

optimizing error detection during the development stages with better quality code before deployment.

• Deployment Automation with AWS Code Deploy: AWS Code Deploy is a service that enables

application deployment on different environments, including Amazon EC2, AWS Lambda, and on-premise

environments. The work of Code Pipeline is to build the application to turn to CodeDeploy in order to

deploy the application to the right resources. It is compatible with blue/green and rolling deployment,

meaning minimum time can be spent on deploying new code, and the risk of deploying a faulty version is

limited. Code Deploy works together with other monitoring services, such as Amazon Cloud Watch, to

monitor problems likely to occur in the course of deployment and automatically revert to previous versions

in case of such problems. Thus, Code Deploy, which integrates into a pipeline to replace the traditional

manual deployment process, guarantees stable and efficient releases and allows continuing the delivery of

updated features.

3.4. Monitoring and Security

Figure 4: Monitoring and Security

• AWS CloudWatch for Performance Monitoring: AWS Cloud Watch is the monitoring and

observability tool in AWS Cloud that analyses the real-time performance and health of cloud-native

applications. It captures, measures, and monitors metrics, logs, and events of applications, resources, and

services in AWS. Cloud Watch also allows developers basic operations for configuring alerts and actions for

certain thresholds, including high CPU utilization or low memory, to ensure a good performance of the

cloud. These metrics are visualized through the use of Cloud Watch dashboards and are alerted whenever

they go past their threshold, thus maintaining proactive monitoring. Also, being connected with AWS

Lambda it can be auto-scaled and generate events-based responses, which also enhances the performance

and non-trivial cost.

• AWS IAM for Access Control and Security: AWS IAM is one of the most important factors in

managing the identity and access of a cloud-native application through the AWS services. IAM also helps

AWS CloudWatch
for Performance

Monitoring

AWS IAM for Access
Control and Security

Amazon Guard Duty
for Threat Detection

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 9

administrators specify fine-grained permission through policies so that everyone and everything above,

below, and in between the services, users, or roles will have the right permission. IAM, by application of the

principle of least privilege, ensures services and users are only opened to certain rights and permissions they

need to perform their intended tasks safely. IAM recognizes and enables multi-factor authentication and can

work interaction with other AWS services like S3 and EC2 to ensure consistent security standards. This is

particularly important to bear in mind when using microservices architectures, in which numerous services

and APIs are interacting constantly.

• Amazon Guard Duty for Threat Detection: Amazon Guard Duty is an intelligent security analysis

service offering continuous, continuous threat monitoring across AWS accounts, resources, and data. This

service, called Guard Duty, utilizes machine learning capabilities and anomaly detection with a threat

intelligence plan to help detect new possible security threats such as account compromise, unusual data

access or threats to EC2 instances. AWS Cloud Trail, VPC Flow Logs, and DNS logs can be examined in

Guard Duty to detect security threats, and the services offer alerts regardless of having to be configured.

This makes it possible for organizations to be able to counter threats and manage risks in the shortest time

possible. It also supports close integration with AWS Security Hub and Amazon Cloud Watch in order to

identify and respond to security incidents in time.

4. RESULTS AND DISCUSSION

4.1. Scalability and Performance

Both microservices and containerization on Amazon Web Services have revolutionized how organizations

address application scalability and their performance. Suddenly, these large monolithic applications are split

into several small, equally capable, and independent services called microservices. This modular design is

very profitable in terms of scalability. Basically, in the conventional monolithic architecture, where

scalability was a challenge, more resources had to be acquired for the entire application, even if only a few

parts were the busiest. This often used to result in over-provisioning; thus; resources were left idle during

periods of low traffic, with the implication being high operational costs.

In a microservices architecture, every service is deployed, scaled, and maintained separately. For instance, if

one form of service is highly demanded (say, a payment gateway during the festive season), only that

service can be expanded without a significant impact on the rest of the architecture. This selective scaling is

achieved through Amazon Web Services (AWS) solutions such as Amazon Elastic Container Service (ECS)

and Amazon Elastic Kubernetes Service (EKS), both of which include effective instruments of horizontal

scaling. ECS and EKS work with scaling for services and load and start or delete the containers based on the

requirements, thus abstracting away the process of scaling from the manual control.

4.1.1. Performance Improvements

The performance improvements gained from microservices and containerization are evident in several areas:

• Reduced Latency: Taken that microservices are designed to be lightweight and independently

deployable, there is often less time spent on communication between services, with APIs often used for this

purpose. Because services are decoupled, they can live on different nodes across several AZs, which help

avoid problems that happen in a single data center. This deployment in multiple AZs enhances fault

tolerance while increasing the efficiency of handling user requests.

• Higher Throughput: Due to the concurrency mechanism of processing requests with the help of

many containers and nodes, the provided microservices can process more requests overall. Every service

can grow in demand while it does not impose a load on other services of the app, which makes it more

effective.

• Optimized Resource Utilization: In the monolithic model, CPU and memory were usually

overloaded in time max and were not able to scale only the part of the application needed both analytically

and for CPU and memory utilization; the usage reduced hugely with the migration to microservices.

Containers impose encapsulation at the same time so that they only take what they require and do not

overload infrastructures.

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 10

Table 1: Resource Utilization and Cost Comparison Pre- and Post-Containerization on AWS

Metric
Pre-Containerization

(Monolithic)

Post-Containerization

(Microservices)

CPU Utilization (%) 75% 45%

Memory Utilization (%) 80% 50%

Downtime Reduction (%) 100% 80%

Cost Reduction per Instance (%) 0% 40%

Number of Over-Provisioned

Resources (%)
25% 0%

Response Time Improvement (%) 0% 52%

Figure 5: Graph representing Resource Utilization and Cost Comparison Pre- and Post-

Containerization on AWS

• CPU Utilization: CPU is often maintained as one of the most critical parameters, which describes

the efficiency of the processing resources in each architecture. In the pre-containerization monolithic setup,

the CPU utilization was at 75%, implying that competencies were under pressure during the peak times. The

decrease to 45% after the containerization demonstrates better distribution of the CPU resources since the

microservices can then be configured to run only to the required amount as opposed to the prior fixed

quantity of 10.

• Memory Utilization: Measures of memory indicate how well the memory utilized will manage the

resources needed in the application. The monolithic architecture demonstrated that 80% of the memory was

being used, and carrying out the request could become slow and become a bottleneck. After migrating from

monolithic architecture to microservices, memory usage was reduced to half, proving that resources are

effectively used in efficient ways and improved application performance enhances smooth working.

• Downtime Reduction: Decreasing the average time that the system is down is another important

measure which speaks about how reliable the system is. Met with a total of 10 hours a month, monolithic

architecture literally dealt a severe blow to the UX. It is, namely, after the company adopted a microservices

architecture, that the time spent on downtime was slashed to 120 minutes per month, meaning that the

reliability of the services was improved. The satisfaction that the users got was also improved.

• Cost Reduction per Instance: Cost reduction per instance measures the cost of the infrastructure

used in an organization based on a financial measurement. In the monolithic setup, organizations had

constant expenses; they incurred generalized costs, such as for unutilized EC2 instances. The

implementation of the microservices approach led to a reduction in the cost per instance of 40 per cent; true

to the advantages of dynamical resources and their relation to cost only.

• Number of Over-Provisioned Resources: Hence, over-provision of resources is evident, indicating

the problems of resource over-commitment. In the pre-containerization phase, organizations estimated that

25% of resources used to be over-provisioned, adding to the organization’s bill. Since the transition to

0%

20%

40%

60%

80%

100%

120%

Pre-Containerization
(Monolithic)

Post-Containerization
(Microservices)

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 11

micro-services, however, over-booking was no longer done and therefore cut the figure to 0%, which in fact,

represents a more exact estimation of resources needed based on actual application requirements.

• Response Time Improvement: Response time improvement is the process that helps to solve the

problems of application performance by handling users’ requests and providing necessary results as fast as

possible. First, the lack of microservices project had a response time of 250 ms which might complicate user

experience during traffic’s rush. After the transition, it was reduced by 52%, making the response time equal

to 120 ms with overall better microservices efficiency, resulting in a better user experience.

4.2. Reliability and Resilience

Mobile app utilization for the event-driven execution methodologies through AWS Lambda has

dramatically changed application reliability. Many deployments of Lambda shifted applications away from

a static infrastructure or required employees to scale up and down manually. Still, that is not how the AWS

Lambda function operates because the service automatically allocates resources when an event occurs; as a

result, the application can easily scale in response to it based on the volume of the requests it has received. It

is particularly useful under bursts where conventional systems are unable to cope with the available

resources. Lambda makes many components of the application go horizontally and function as many times

as is necessary to avoid resource constraints, which make services slow or even inaccessible. It is also

essential to develop self-healing capabilities through Λ because of its event-driven architecture. If a certain

microservice has a problem, Lambda can remain as a standalone microservice while keeping the candidacy

of the entire application healthy. This automatically triggered execution of functions also enhances

reliability through innovation that enables services to continue running in spite of partial system crashes.

Furthermore, Lambda intelligently partitions the load across multiple Availability Zones contained in AWS

regions and protects against localized AZ failures. In addition to Lambda, Amazon ECS and Amazon EKS

are also at the forefront of improving system availability through the distribution of the containerized

workload across multiple AZs. Both services allow microservices to run the container independently, and if

one AZ experiences a problem, it will be automatically redeployed. This helps have continuous uptime,

which means others do more workloads, making availability zone high availability zone helping to have less

break time.

Table 2: Downtime and Availability Metrics (Percentage Values)

Metric Pre-

Lambda/Containerization

(%)

Post-

Lambda/Containerization

(%)

Downtime Reduction (%) 0 80%

Fault Tolerance Improvement

(%)

60% 90%

Availability (%) 95% 99.99%

Availability Zone

Improvement (%)

100% 300% +

Figure 6: Graph representing Downtime and Availability Metrics (Percentage Values)

0%
60%

95% 100%80% 90% 99.99%

300%

Downtime
Reduction (%)

Fault Tolerance
Improvement (%)

Availability (%) Availability Zone
Improvement (%)

Pre-Lambda/Containerization (%) Post-Lambda/Containerization (%)

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 12

• Downtime Reduction (%): Downtime reduction describes how much of a system’s operational

downtime has been mitigated or avoided. Originally, availability was low; there were approximately 10

hours of unavailability per month, and availability negatively impacted usability and productivity. With

AWS Lambda and containerization, the limited downtime was at 2 hours per month, representing a

reduction of 80%. This improvement also highlights the effectiveness of increasing the reliability and

responsiveness of the application so as to guarantee continuous and efficient delivery of services to

customers.

• Fault Tolerance Improvement (%): Fault tolerance improvement evaluates the efficiency of the

system in the presence of failures, which ranges from 0 to 10. Implementing thereby microservices

architecture based on AWS Lambda, the fault tolerance was estimated at 6 (from 10) prior to changing the

architecture. After that, the rating was increased to 9 out of 10, which is a 30 percent performance

improvement in terms of fault tolerance after the implementation. This enhancement means that the system

can load balance independent service outages within the application and thereby make the system more

operationally robust.

• Availability (%): Availability percentage represents the percentage of time for which the system is

up and running and accessible to the users. At first, the application had 95 percent of availability, which

means users of the application would have compromised downtimes and disruptions. Following the run of

AWS Lambda and with an addition of containerization, availability rose to a staggering 99.99% which

suggests a marked increment in uptime. This enhancement enables the user to be able to access services

with little or no interference, making the system reliable.

• Availability Zone Improvement (%): Availability zone improvement represents the improvement

in the general infrastructural reliability owing to the provision of many availability zones. Initially, the

application was deployed in a single availability zone; it is vulnerable in case of failure in that particular

zone. When implemented, there was a growth rate of more than 300% as the company moved to more than

three availability zones.

4.3. Cost Savings

The adoption of containers and serverless changes on AWS has resulted in significant cost optimality with

regard to resource allocation and utilization. In earlier infrastructure architectures, organizations used

Amazon EC2 instances to meet the requirement of high-load requests that were largely unproductive. For

example, underutilization of provisioned EC2 instances was common where many provisioned instances

would lay idle during low traffic; this led to high costs since companies would provision instance

capabilities that would support 100 concurrent users, though they only had an average of 50 users per day.

Moreover, commensurate with the fixed costs of EC2 instances added stress to varied organizations’

monetary concerns: fleetingly availing infrastructural provisions continued to be chargeable for diverse-

hybrid workloads—though budgets felt the pinch with a degree of volatility. Conversely, AWS Lambda

with Fargate can be utilized more cheaply and adaptively as needed. AWS Lambda’s use of event-driven

computing means that organizations can ‘turn on’ code to execute only in response to certain events and is

charged based on actual usage in milliseconds. This operational model ensures that companies are charged

fees wherever operational; however, no charges are ever made during inactive periods. In a likely manner,

AWS Fargate eliminates server management so that developers can focus on application deployment

without worrying about infrastructure issues.

Moreover, Amazon Fargate supports flexible provisioning with instant auto-scaling of containers to meet

application performance requirements or spikes while providing a pay-for-what-you-use model. This kind of

thinking represents scaling based on operational changes. It is especially beneficial when it comes to

accommodating differences in workloads, which in turn allowed for significant cost savings and better

resource management, which in turn revolutionized financing options for companies with cloud-native

architectures.

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 13

Table 3: Cost Savings Before and After AWS Lambda and Fargate Implementation

Metric Pre-Lambda/Fargate Post-Lambda/Fargate

Average Monthly Cost (USD) 10,000 6,000

Number of Idle Resources (%) 25% 0%

Pay-per-Use Billing

Efficiency
Low High

• Average Monthly Cost (USD): The average rate of $10,000 per month proved to be heavily

suppressed as the average cost slashed to $6000 with Lambda/Fargate implementation. This cost saving of

40% has come about with a full reduction of charges for idle resources that are attached to the EC2

instances and a change of price aside from subscription to a pay-as-you-go model. The relationship between

usage and cost is direct; this means that organizations only get charged for the amount of resources that they

have used.

• Number of Idle Resources (%): After the implementation of serverless architecture, the percentage

of idle resources was reduced from 25% to 0%. Before, it was quite common to have spare EC2 instances to

meet periods of high demand, which served as an ineffective solution because there was typically a lot of

wasted capacity. AWS Lambda and Fargate work in a pay-as-you-go model, in that you only pay for the

required resources, and there are no idle resources to consume credit either.

• Pay-per-Use Billing Efficiency: The transition of the customer billing system from Low to High

efficiency in pay-per-use billing reflects the extent to which it is possible to achieve congruency between

resource consumption and real costs. Earlier literature pointed out that in traditional environments,

organizations had committed and had to pay fixed costs even if nominal usage was low. Nonetheless, AWS

Lambda and Fargate have variable costs that align with the actual usage of server resources, which makes

costs easier to control and more predictable.

5. CONCLUSION

AWS microservice/containerization has drastically changed the way organizations approach/approximate

application development and deployments, as well as achieve cloud-native solutions, scalability, and

resilience at reasonable costs. Due to the extensive number of managed services that are supported by AWS,

users of AWS can minimize the amount of work required to build out and manage complex infrastructures

of software systems; thus, the work that is required in this context can be mostly limited to delivering key

features and functionalities. This shift is not only beneficial in terms of easier development but also faster

because instead of developing elements from scratch developers can use ready components and services.

Application in microservices and containerization provide various benefits that improve those areas that

relate to working, effectiveness, and control of the application. The structural design of the microservices

breaks the application into more manageable, small services in order to be developed, deployed, and

managed separately. This modularity enhances flexibility within teams since complete modifications of an

application are not compromised by individual services. Thirdly, containerization, with the help of such

tools as Docker or AWS Fargate helps avoid such problems as variability in application production

environments compared to development, testing, and staging environments.

Economies of costs are also of another importance in embracing AWS-Driven Architecture. With AWS

Lambda, containers such as Amazon ECS and Amazon EKS launched by businesses are charged only when

they are used. This is quite advantageous since it eradicates the issue of resource wastage, since the

businesses can acquire them proportionate to their needs. In addition, concerning the availability and failure

patterns of cloud systems, the high availability and fault tolerance came built-in with most of the AWS

services, which improves the reliability of the framework used compared to the application.

With time, trends arising from the cloud-native architecture will emphasize lessons on serverless approaches

to computing, CI/CD solutions, and better security systems. The adoption of CI/CD pipelines helps provide

a system for proper integration and deployment of the code, which makes it easy for organizations to adapt

to meeting market needs or feedback from customers. Moreover, considering the continuously evolving

threats in the cyber domain, it will also become critical to have appropriate secured action procedures within

the different stages of the application construction and deployment.

Volume 8 Issue 2 @ 2022 IJIRCT | ISSN: 2454-5988

IJIRCT2503090 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 14

As outlined in this paper, the microservice and containerized architecture brought by AWS not only enables

organizations to develop novel applications but also contributes direction for the further evolution of cloud

computing. When these best practices have been put into practice, it becomes evident that business

organizations will be in a position to respond accordingly to the ever-changing technological environment.

REFERENCES:

1. Mell, P. (2011). The NIST Definition of Cloud Computing. NIST Special Publication, 800-145.

2. Newman, S. (2015). Building Microservices: designing fine-grained system. Oâ€™ Reilly Media,

Inc., California, 2.

3. Kavis, M. (2014). Architecting the cloud: design decisions for cloud computing service models

(SaaS, PaaS, and IaaS). John Wiley & Sons, Inc., Hoboken, New Jersey.

4. Hightower, K., Burns, B., & Beda, J. (2017). Kubernetes: Up and running dive into the future of

infrastructure. oreilly media. Inc., Sebastopol.

5. Mueller, J. P. (2017). AWS for Developers for Dummies. John Wiley & Sons.

6. Diniz, H. F. F. D. S. (2020). Multi-Concession Cloud-Based Toll Collection and Validation System

(Doctoral dissertation).

7. Galin, A. V., & Davydenko, E. A. (2020). Containerization as the next stage in the development of

transport systems. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala

SO Makarova, 12, 996-1003.

8. A. Jindal, V. Podolskiy and M. Gerndt, "Multilayered Cloud Applications Autoscaling Performance

Estimation", 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)

Kanazawa Japan, pp. 24-31, 2017.

9. Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M., & Steinder, M. (2015, September).

Performance evaluation of microservices architectures using containers. In 2015, IEEE 14th

International Symposium on network computing and applications (pp. 27-34). IEEE.

10. Liu, G., Huang, B., Liang, Z., Qin, M., Zhou, H., & Li, Z. (2020, December). Microservices:

architecture, container, and challenges. In 2020 IEEE 20th international conference on software

quality, reliability and security companion (QRS-C) (pp. 629-635). IEEE.

11. Singh, V., & Peddoju, S. K. (2017, May). Container-based microservice architecture for cloud

applications. In 2017 International Conference on Computing, Communication and Automation

(ICCCA) (pp. 847-852). IEEE.

12. Kratzke, N., & Siegfried, R. (2021). Towards cloud-native simulations–lessons learned from the

front-line of cloud computing. The Journal of Defense Modeling and Simulation, 18(1), 39-58.

13. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C. B., & Domaschka, J. (2015,

December). Cloud orchestration features: Are tools fit for purpose?. In 2015 IEEE/ACM 8th

International Conference on Utility and Cloud Computing (UCC) (pp. 95-101). IEEE.

14. Singla, K., & Sathyaraj, P. (2019). Comparison of Software Orchestration Performance Tools and

Serverless Web Application.

15. A. Agarwal, S. C. Gupta and T. Choudhury, "Continuous and Integrated Software

Development using DevOps". 2018.

16. Routavaara, I. (2020). Security monitoring in AWS public cloud.

17. Katukoori, V. K. (1995). Standardizing availability definition. University of New Orleans, New

Orleans, La., USA.

18. P. A. Abdalla and A. Varol, "Advantages to Disadvantages of Cloud Computing for Small-Sized

Business", 2019 7th International Symposium on Digital Forensics and Security (ISDFS) Barcelos

Portugal, pp. 1-6, 2019.

19. Bhatt, S., Patwa, F., & Sandhu, R. (2017). Access control model for AWS Internet of Things. In

Network and System Security: 11th International Conference, NSS 2017, Helsinki, Finland, August

21–23, 2017, Proceedings 11 (pp. 721-736). Springer International Publishing.

20. Koskinen, M. (2016). Microservices and containers: benefits and best practices.

