
Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

A Comprehensive Review of the Adoption of

TypeScript over JavaScript

Venkata Padma Kumar Vemuri

Santa Clara, USA

Padma.vemuri@gmail.com

Abstract

The rapid evolution of web development languages has ignited a crucial conversation regarding the

preference for TypeScript over JavaScript. TypeScript, which is created and maintained by

Microsoft, has steadily gained popularity due to its static typing system and enhanced tooling

capabilities in comparison to JavaScript. This report delivers a thorough exploration of the

inclination towards TypeScript as opposed to JavaScript, stressing the merits of adopting TypeScript

in current software engineering practices. We explore the fundamental distinctions between these

languages by examining theirfeatures, error handling, tooling support, and maintainability. Detailed

code examples illustrate the notable differences and real-world applications. Furthermore, we assess

existing research and studies, offering insights into the increasing trend towards TypeScript in the

tech industry for large-scale applications. This analysis combines various theoretical viewpoints with

real-world data, serving as a significant guide for those in practice, academia, and leadership roles

concerning the integration of TypeScript.

Keywords: JavaScript, TypeScript, Static Typing, Web Development, Software Engineering,

Programming Languages

INTRODUCTION

The evolution of programming languages for web development, particularly JavaScript and TypeScript,

reflects a significant shift in addressing the complexities and maintainability challenges of modern web

applications. JavaScript has been critical in client-side web development due to its flexibility and lower

learning curve which allows for quick development and adaptation to changing requirements.[1][5]

However, this flexibility also introduces challenges such as code maintainability and security vulnerabilities,

as JavaScript's dynamic typing can lead to runtime errors and difficulties in managing large codebases.[3][9]

The frequent changes and reliance on third-party libraries further complicate the maintenance of JavaScript

applications, as observed in studies analyzing the evolution and quality of JavaScript code over time.[1][2]

In response to these challenges, TypeScript was introduced as a superset of JavaScript, offering optional

static typing and enhanced tooling to improve code quality and developer productivity in large-scale

projects. TypeScript's type system helps catch errors at compile time, reducing runtime errors and improving

the reliability of applications.[4] Moreover, TypeScript's compatibility with existing JavaScript code and its

ability to integrate with popular JavaScript frameworks and libraries have facilitated its adoption in the tech

industry. The gradual typing approach in TypeScript allows developers to incrementally adopt static typing,

providing a balance between flexibility and safety [4][10]. This has led to a growing preference for

TypeScript in projects where maintainability and scalability are critical, as it addresses the limitations of

JavaScript while retaining its dynamic capabilities. Overall, the adoption of TypeScript over JavaScript is

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

driven by its ability to enhance code quality, maintainability, and developer experience, making it a valuable

tool in the evolving landscape of web development [7][8]. The remainder of this paper is organized as

follows: Section II provides a background on JavaScript and TypeScript, outlining the evolution and key

design philosophies of both languages. Section III reviews the research literature that supports the adoption

of TypeScript. Section IV details the intrinsic advantages of TypeScript, including static type checking,

enhanced tooling, and improved code maintainability. Section V offers a deep dive into the differences

between JavaScript and TypeScript, including practical code samples that demonstrate the features of both

languages. Section VI discusses the implications of these findings for developers and organizations, while

Section VII concludes with a summary of insights and potential directions for future research.

BACKGROUND

JavaScript: The Ubiquitous Web Language

JavaScript was originally created by Brendan Eich in 1995 at Netscape Communications to provide a

lightweight scripting language for the web. Over the years, JavaScript has evolved from a simple scripting

language into a powerful, high-level programming language. The dynamic nature of JavaScript allows

developers to write code quickly without the constraints of a static type system. However, as the complexity

of web applications increased, JavaScript’s loosely typed structure began to present challenges in

maintaining large-scale applications.JavaScript’s features include:

Dynamic Typing:Variables are not bound to a specific type and can change types dynamically.

Prototype-based Inheritance:Objects inherit properties and methods from prototypes rather than from

classes.

Event-driven and Asynchronous Programming:JavaScript’s non-blocking I/O model allows efficient

handling of asynchronous operations.

Interoperability:As a language embedded in web browsers, JavaScript seamlessly integrates with HTML

and CSS.

Despite these advantages, the dynamic nature of JavaScript introduces potential pitfalls in large-scale

projects. For instance, type-related errors are typically caught only at runtime, and the lack of compile-time

checks can lead to bugs that are difficult to trace and resolve.

TypeScript: A Superset with Enhanced Features

TypeScript was introduced by Microsoft in 2012 as an open-source programming language that builds on

JavaScript by adding optional static typing, classes, and interfaces. TypeScript is designed to fulfill the

shortcomings of JavaScript by providing a compile-time type-checking mechanism that can catch errors

before execution. By offering these features while still compiling down to plain JavaScript, TypeScript

allows developers to gradually adopt its features without having to rewrite existing codebases

entirely.TypeScript’s key features include:

Optional Static Typing:Developers can specify types for variables, function parameters, and object

properties, improving code clarity and reliability.

Enhanced Tooling:TypeScript’s static type system allows modern integrated development environments

(IDEs) to offer more robust code completion, refactoring, and debugging capabilities.

Improved Maintainability:The use of interfaces and classes in TypeScript encourages better design

practices, particularly in large-scale applications.

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

Backward Compatibility:TypeScript is a superset of JavaScript, meaning that all valid JavaScript code is

also valid TypeScript code.

TypeScript’s evolution has been marked by continuous improvements to its type inference system, module

handling, and integration with build tools. This evolution has spurred its adoption among developers seeking

improved reliability and maintainability in their codebases.

LITERATURE REVIEW

The following section reviews seminal studies, industry reports, and empirical research that focus on the

adoption of TypeScript over JavaScript.

Early Studies on Static Typing and Code Quality

Research into static type systems in dynamically typed languages has a long history. Early work, such as

[Wegman and Zadeck, 1993] and [Fahndrich and Aspinall, 2000], argued that static type checking can catch

errors early in the development process and improve overall code quality. These studies laid the groundwork

for the subsequent development of statically typed languages and motivated many of the innovations found

in TypeScript.

Empirical Evidence from Industry

Several industry surveys and empirical studies highlighted the growing adoption of TypeScript. For

example:

GitHub Repositories Analysis:Studies have shown that a significant and increasing proportion of GitHub

repositories have migrated parts of their codebases to TypeScript. Analysis of commit histories and issue

trackers indicates that TypeScript’s static typing is often credited with reducing runtime errors and

enhancing maintainability.

Developer Surveys:Surveys conducted by organizations such as Stack Overflow and JetBrains

consistently reported high satisfaction rates among TypeScript users. Respondents cited improved

readability, better error detection, and enhanced productivity as major benefits.

Case Studies:Several case studies documented by tech companies (e.g., Airbnb, Asana, and Slack)

demonstrated that refactoring JavaScript codebases to TypeScript led to a measurable reduction in bugs and

improved developer confidence. These studies also highlighted the smoother onboarding process for new

developers and increased code reliability.

Comparative Studies: TypeScript vs. JavaScript

Comparative research has been instrumental in underscoring the differences between TypeScript and

JavaScript. Key findings include:

Error Detection:TypeScript’s compile-time error checking significantly reduces the occurrence of

runtime errors compared to JavaScript.

Tooling Support:Enhanced integration with modern IDEs, such as Visual Studio Code, has been

repeatedly noted as a strong point in favor of TypeScript. Developers benefit from advanced

autocompletion, inline documentation, and real-time error detection.

Maintainability:Empirical studies have shown that projects written in TypeScript often experience fewer

regression bugs and easier maintainability over time, particularly in large-scale applications.

These studies collectively support the notion that TypeScript offers significant advantages over JavaScript in

contexts where code quality, maintainability, and developer productivity are critical.

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

ADVANTAGES OF ADOPTING TYPESCRIPT

In this section, we delve into the intrinsic advantages of adopting TypeScript over JavaScript. We discuss

how TypeScript’s design and features address some of the challenges inherent in large-scale JavaScript

applications.

Static Type Checking

One of the important features of TypeScript is its optional static typing system. This feature allows

developers to specify types for variables, function parameters, and return values. By catching type errors at

compile time, TypeScript helps prevent many of the runtime errors that can plague JavaScript applications.

Early Error Detection

Static type checking in TypeScript enables early detection of errors.

Fig.1. JavaScript snippet that will lead to a runtime error

In contrast, TypeScript would flag this issue at compile time.

Fig.2. TypeScript snippet that will flag the issue at complie time.

By preventing such type mismatches, TypeScript promotes safer code and encourages developers to think

more critically about the types of data being handled.

Improved Code Documentation and Readability

Type annotations in TypeScript serve as an additional layer of documentation. For example, when a function

signature includes type annotations, it becomes immediately clear to other developers what kinds of

arguments are expected and what the function returns. This explicit documentation reduces the learning

curve for new developers joining a project and enhances overall code readability.

Enhanced Tooling and IDE Support

The static nature of TypeScript greatly enhances the capabilities of modern Integrated Development

Environments (IDEs). Features such as autocompletion, real-time error detection, and refactoring support

are bolstered by TypeScript’s compile-time information.

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

Code Completion and Navigation

IDEs like Visual Studio Code coverage TypeScript’s type system to offer advanced code completion and

navigation features. For instance, as developers type, the IDE can suggest methods and properties available

on an object, reducing the need for constant reference to documentation.

Refactoring Tools

TypeScript’s static type system also makes automated refactoring safer and more reliable. When renaming

variables or functions, the IDE can update references throughout the codebase without breaking

functionality, a task that is error-prone in dynamic languages.

Object-Oriented Programming (OOP) Features

While JavaScript has evolved to support classes (especially after the introduction of ECMAScript 6),

TypeScript extends these capabilities with robust OOP features including interfaces, abstract classes, and

access modifiers. These features are essential for building scalable and maintainable software architectures.

Interfaces and Type Contracts

Interfaces in TypeScript define a contract for objects, specifying the required properties and methods. This

enforces a clear structure and ensures that objects adhere to expected shapes, which is particularly useful in

large codebases.

Fig.3. Typescript interface example

Inheritance and Polymorphism

TypeScript supports classical inheritance patterns, enabling developers to create base classes and derive

specialized classes. This leads to better code reuse and abstraction.

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

Fig.4. Typescript inheritance example

Scalability and Maintainability

The structured nature of TypeScript makes it particularly suitable for large-scale applications. The

combination of static typing, robust OOP features, and modern tooling support contributes to better code

organization and easier maintenance.

Reduced Technical Debt

By catching errors early and providing clear contracts via interfaces and type annotations, TypeScript helps

reduce technical debt. Developers can refactor code with confidence, knowing that potential issues will be

flagged during compilation.

Collaborative Development

TypeScript’s self-documenting code style facilitates collaboration among development teams. With explicit

type definitions and interfaces, new team members can more easily understand existing code, thereby

reducing onboarding time and minimizing the risk of introducing bugs.

DEEP DIVE: DIFFERENCES BETWEEN JAVASCRIPT AND TYPESCRIPT

In this section, we provide a detailed examination of the differences between JavaScript and TypeScript. We

cover syntax, error handling, and runtime behavior with a focus on real-world coding examples.

Syntax and Type Annotations

JavaScript’s Dynamic Typing

JavaScript’s dynamic typing allows variables to hold any type of data and change type dynamically. This

flexibility, while powerful, often leads to subtle bugs.

Fig. 5. JavaScript dynamic typing example

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

While dynamic typing can be useful for rapid prototyping, it also means that type-related mistakes can only

be caught at runtime, potentially leading to runtime exceptions in production.

TypeScript’s Static Typing

TypeScript enforces static types, confirming that the types of variables are known at compile time. This

leads to safer and more predictable code.

Fig.6. TypeScript static typing example

In this example, the TypeScript compiler will enforce that variable remains a number, thus preventing

inadvertent type changes that could lead to runtime errors.

Function Overloading and Signatures

TypeScript allows function overloading—a feature that is not directly available in plain JavaScript. Function

overloading enables the definition of multiple function signatures for a single function, improving clarity

and usability.

Fig.7. TypeScript function overloading example

In JavaScript, similar behavior can be achieved using conditional logic within a single function, but without

compile-time guarantees of type correctness.

Error Handling and Debugging

JavaScript Error Handling

JavaScript relies on runtime error detection and exception handling mechanisms. While try-catch blocks are

available, many errors (especially type errors) are only caught when the code is executed.

Fig.8. JavaScript error handling example

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 8

TypeScript Compile-Time Error Checking

TypeScript compile time error checking decreases the incidence of runtime errors. The compiler flags

mismatched types and other potential issues before the code is executed, thereby preventing many common

runtime exceptions.

Fig.9. TypeScript compile-time error checking example

Module Systems and Code Organization

Both JavaScript (with ECMAScript 6 modules) and TypeScript support modular code organization.

However, TypeScript’s type annotations and interfaces add an extra layer of documentation and structure to

modules.

Fig.10. TypeScript module example

While the syntax for modules in both languages is similar, TypeScript’s additional type safety contributes to

a more robust module system.

Ecosystem and Build Process

TypeScript projects typically include a compilation step that converts TypeScript into JavaScript. This build

process, often integrated with modern development workflows (using tools such as Webpack, Babel, or the

TypeScript compiler itself), provides opportunities to enforce coding standards and integrate with

continuous integration pipelines.

In contrast, JavaScript projects may rely on runtime transpilers or interpreters without a separate

compilation step, making certain types of errors harder to catch during development.

PRACTICAL IMPLICATIONS FOR DEVELOPERS AND ORGANIZATIONS

The theoretical and empirical benefits of TypeScript’s design translate into tangible practical advantages for

developers and organizations.

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 9

Developer Productivity

Developers who work with TypeScript report higher productivity due to enhanced IDE support, better code

completion, and a reduction in debugging time. The static type system enables developers to identify errors

early in the development cycle, which can dramatically reduce the time spent troubleshooting production

issues.

Code Quality and Maintainability

The explicit type annotations and robust module systems foster improved code quality. By reducing the

likelihood of runtime errors and providing clear contracts between different parts of an application,

TypeScript facilitates easier code maintenance and refactoring. This, in turn, leads to lower maintenance

costs over time.

Scalability of Large Codebases

Organizations that manage large-scale codebases find TypeScript’s structure and tooling support to be

essential. The language’s emphasis on type safety and modularization makes it easier to manage code

complexity, leading to fewer bugs and more reliable deployments in production environments.

Training and Onboarding

For teams with mixed levels of experience, TypeScript’s explicit types and self-documenting code can

significantly ease the onboarding process. New developers can quickly understand the data flows and

interfaces used in a project, thereby reducing the ramp-up time required to become productive members of

the team.

Industry Adoption and Ecosystem Maturity

The growing community and widespread adoption of TypeScript have led to a robust ecosystem of libraries,

tools, and frameworks. Popular frameworks such as Angular, React, and Vue have embraced TypeScript

support, further incentivizing its adoption. Industry leaders have publicly acknowledged the benefits of

TypeScript in improving application robustness and reducing development cycles.

CASE STUDIES AND EMPIRICAL EVIDENCE

This section presents several case studies and empirical evidence that illustrate the successful adoption of

TypeScript in real-world projects.

Case Study: Refactoring a Legacy JavaScript Codebase

In one notable example, a mid-sized software company decided to refactor its legacy JavaScript codebase to

TypeScript. The company faced several challenges:

Inconsistent Coding Practices:The absence of type annotations led to inconsistent implementations and

frequent runtime errors.

High Bug Rate:The dynamic nature of JavaScript resulted in many type-related bugs that were difficult to

trace.

Maintenance Overhead:The lack of documentation and explicit contracts increased the time required for

bug fixes and new feature development.

By migrating to TypeScript, the company observed the following improvements:

• Early Error Detection: Compile-time checks reduced the number of bugs reaching production.

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 10

• Improved Developer Experience: Enhanced tooling led to faster code navigation and debugging.

• Better Documentation: Explicit type annotations served as in-code documentation, easing

onboarding and maintenance.

Empirical Survey Results

Several developer surveys reported high levels of satisfaction with TypeScript. For instance:

• Stack Overflow Developer Survey (2019): A significant proportion of respondents expressed that

TypeScript’s static type system led to improved code quality and reduced debugging time.[11]

These survey results highlight the community’s recognition of the intrinsic value that TypeScript brings to

the table.

Performance Considerations

While the primary focus of TypeScript is not performance at runtime (since it compiles to JavaScript), the

benefits of reduced runtime errors and improved code maintainability indirectly contribute to overall

application performance. With fewer bugs and better-structured code, applications can be optimized more

effectively.

DETAILED CODE SAMPLES AND COMPARATIVE ANALYSIS

To further illustrate the practical differences between JavaScript and TypeScript, this section provides

extended code samples and analyses common patterns in both languages.

Example: Data Validation in a Web Application

Consider a scenario in which a web application receives data from a user and must validate that data before

processing it.

JavaScript Implementation

Fig.11. JavaScript Data Validation

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 11

TypeScript Implementation

Fig.12. TypeScript Data validation using interfaces

Analysis:

In the JavaScript example, explicit type checking is required at runtime. In TypeScript, the interface

definition ensures that userData conforms to the expected structure, and many runtime checks become

redundant. This reduces boilerplate and the potential for human error.

Example: Asynchronous Operations

Handling asynchronous operations is a common requirement in web development. Below are examples

demonstrating asynchronous API calls in JavaScript and TypeScript.

Fig.13. JavaScript Asynchronous API call using Promises

Fig.14. TypeScript Asynchronous API call with type annotations and async/await interface

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 12

TypeScript not only benefits from type annotations for the API response but also employs async/await

syntax for a more readable asynchronous workflow. The explicit definition of ApiResponse provides clarity

and reduces the risk of misinterpreting the returned data.

Example: Complex Object Structures

Managing complex object structures and ensuring their consistency across an application is another area

where TypeScript shines.

Fig. 15. JavaScript complex object without explicit type definitions

Fig.16. TypeScript Complex object with explicit interfaces

The TypeScript implementation enforces the object structure through interfaces, eliminating the need for

manual runtime validations of the order structure.

DISCUSSION

The adoption of TypeScript in the tech world can be understood as a response to the growing complexity of

modern software systems. The ability to catch errors at compile time, along with robust tooling and

enhanced language features, directly addresses many of the pain points associated with JavaScript’s

dynamic nature. This section discusses the broader implications of these advantages.

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 13

Impact on Software Development Lifecycle

TypeScript influences multiple stages of the software development lifecycle:

• Development: Enhanced IDE support and real-time error checking accelerate development and

reduce debugging time.

• Testing: With many errors caught at compile time, developers can focus on more nuanced testing

scenarios rather than basic type correctness.

• Maintenance: Explicit type annotations and clear interfaces reduce the cognitive load when revisiting

code, leading to smoother maintenance and evolution of software.

Adoption Barriers and Organizational Considerations

Despite the clear advantages, some organizations remain hesitant to adopt TypeScript due to:

• Migration Costs: Refactoring large existing JavaScript codebases to TypeScript may involve

significant initial costs.

• Learning Curve: Teams accustomed to dynamic typing may require training to fully exploit

TypeScript’s features.

• Tooling Integration: Organizations must ensure that their existing toolchains and build processes

can seamlessly integrate TypeScript compilation.

However, many organizations have reported that the long-term benefits—improved code quality, reduced

technical debt, and increased developer productivity—far outweigh the initial transition costs.

FUTURE RESEARCH DIRECTIONS

Future work could extend the review presented in this paper by:

• Longitudinal Studies: Tracking the adoption and impact of TypeScript over a longer period to

determine its effect on project success rates and maintenance costs.

• Cross-Language Analyses: Comparing TypeScript’s benefits with those of other strongly-typed

languages that compile to JavaScript, such as Elm or ReasonML.

• Tooling Evolution: Examining how evolving IDE and build tools further enhance or challenge the

integration of TypeScript in various development workflows.

CONCLUSION

This review has explored the adoption of TypeScript in contrast to JavaScript within the technology sector

from various angles. TypeScript presents considerable benefits, such as static type checking, improved

tooling, enhanced maintainability, and a methodical approach to contemporary software development. These

attributes are especially advantageous in large-scale projects where the reliability and clarity of code are

crucial.

Our review indicates that the inherent value of TypeScript is found not only in its superior language features

but also in its capacity to integrate effortlessly into modern development practices. Empirical research and

industry case studies conducted consistently emphasize the benefits of embracing TypeScript, particularly in

reducing bugs, boosting developer productivity, and ensuring better long-term maintainability.

As organizations increasingly address more complex software systems, the advantages of TypeScript are

likely to propel further adoption. The comparative analyses and comprehensive code examples provided

here serve as a guide for developers and organizations to comprehend and capitalize on the benefits of

TypeScript over JavaScript.

)

Volume 5 Issue 6 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2502045 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 14

REFERENCES

[1] Mitropoulos, D., Louridas, P., Salis, V., & Spinellis, D. (2019). Time present and time past: analyzing

the evolution of JavaScript code in the wild. Mining Software Repositories.

https://doi.org/10.1109/MSR.2019.00029

[2] Lennon, B. (2018). JavaScript Affogato: Programming a Culture of Improvised Expertise.

Configurations.https://doi.org/10.1353/CON.2018.0002

[3] Sun, K.-W., & Ryu, S. (2017). Analysis of JavaScript Programs: Challenges and Research Trends. ACM

Computing Surveys. https://doi.org/10.1145/3106741

[4] Wei, S., & Ryder, B. G. (2014). Taming the dynamic behavior of JavaScript. ACM Conference on

Systems, Programming, Languages and Applications: Software for Humanity.

https://doi.org/10.1145/2660252.2660393

[5] Chatzimparmpas, A., Bibi, S., Zozas, I., & Kerren, A. (2019). Analyzing the Evolution of Javascript

Applications. International Conference on Evaluation of Novel Approaches to Software

Engineering.https://doi.org/10.5220/0007727603590366

[6] Arteca, E. (2018). Formal Semantics and Mechanized Soundness Proof for Fast Gradually Typed

JavaScript.

[7] Ambler, T., & Cloud, N. (2015). JavaScript Frameworks for Modern Web Dev.

[8] Obbink, N. G., Malavolta, I., Scoccia, G. L., & Lago, P. (2018). An extensible approach for taming the

challenges of JavaScript dead code elimination. IEEE InternationalConference on Software Analysis,

Evolution, and Reengineering. https://doi.org/10.1109/SANER.2018.8330226

[9] Delcev, S., & Draskovic, D. (2018). Modern JavaScript frameworks: A Survey Study.

https://doi.org/10.1109/ZINC.2018.8448444

[10] Microsoft Corporation. (2012). Introducing TypeScript. [Online]. Available:

https://www.typescriptlang.org

[11] https://survey.stackoverflow.co/2019

https://doi.org/10.1109/ZINC.2018.8448444
https://www.typescriptlang.org/
https://survey.stackoverflow.co/2019

