
Volume 8 Issue 5                                                       @ 2022 IJIRCT | ISSN: 2454-5988 

IJIRCT2501058 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1 

 

Migrating Legacy Applications to AWS Serverless 

Architecture 
 

Prabu Arjunan 
 

Senior Technical Marketing Engineer 

prabuarjunan@gmail.com 

 

Abstract 

One of the most important paradigm shifts happening in modern application development and 

migration strategies is the transition to serverless architecture. This research paper analyzes various 

patterns, challenges, and implementation methodologies of migration approaches to AWS's serverless 

computing platform. The paper will show how organizations can smoothly transition existing 

applications to the serverless platform offered by AWS, with practical implementation guides on cost 

optimization and operational efficiency. The research also covers common challenges and their proven 

solutions based on industry best practices, offering an eye into successful migration patterns and 

architectural considerations. 

 

Keywords: Serverless Migration, Amazon Web Services, AWS Lambda, API Gateway, Migration 

Patterns, Microservices, Cloud Native, Application Modernization 

 

Introduction 

Cloud computing has completely revolutionized the way organizations conceptualize and deliver applications. 

Among all the evolution steps, serverless computing, with AWS Lambda being a major contributor along with 

its associated services, represents a radical shift. As discussed in [1], this paradigm shift comes with several 

benefits. The advantages are a reduction in operational overhead, scalability, and optimization of cost. 

However, migrating existing applications to serverless architectures poses unique challenges that need 

consideration and strategic planning. 

The serverless computing model has gained much attention, as it guarantees reduced infrastructure 

management overhead and increases cost efficiency. Organizations are increasing their awareness of the 

potential of serverless architectures in facilitating their operations and improving their application 

development lifecycle. This research paper focuses on establishing a comprehensive strategy for migration so 

that organizations could effectively transition their existing applications onto the AWS serverless platform 

without impacting performance, security, and operational efficiency. 

 

Migration Assessment Framework 

Application Evaluation Criteria 

As underlined in[2], a successful serverless migration is heavily based on a good upfront assessment of the 

application landscape. While assessing applications for serverless migration, organizations must consider 

several dimensions that influence the feasibility and approach of the migration. Technical compatibility forms 

the foundation of this assessment, comprising factors such as runtime environment compatibility, third-party 

dependencies, and state management requirements. It should also include the patterns of processing by an 

application, like execution duration and frequency, as those are directly affecting the suitability of serverless 

architecture. 



Volume 8 Issue 5                                                       @ 2022 IJIRCT | ISSN: 2454-5988 

IJIRCT2501058 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2 

 

Business considerations are of equal importance in the assessment framework. The operational cost 

implications for the organization are to be studied in detail regarding immediate costs related to the migration 

and long-term operational expenses while considering the cost implications of the cloud provider [4]. In the 

case of response times, application performance requirements should be mapped onto the capabilities of 

serverless platforms. Compliance requirements mostly drive the selection of deployment models and decisions 

around data residency. 

 

AWS Serverless Service Selection Framework 

According to [3], it is proposed that picking appropriate AWS serverless services requires 

a systematic evaluation process, based on both technical and business requirements. A sample code framework 

for evaluation: 

def assess_serverless_compatibility(application): 

""" 

Evaluate application compatibility with AWS serverless services 

""" 

criteria_evaluation = {} 

compatibility_score = 0 

# Evaluate runtime compatibility 

runtime_compatibility = evaluate_runtime(application.runtime) 

criteria_evaluation['runtime'] = { 

'score': runtime_compatibility, 

'weight': 10, 

'notes': get_runtime_notes(runtime_compatibility) 

} 

# Assess state management requirements 

state_requirements = analyze_state_management(application) 

criteria_evaluation['state'] = { 

'score': state_requirements, 

'weight': 20, 

'notes': get_state_notes(state_requirements) 

} 

# Calculate final score and generate recommendations 

compatibility_score = calculate_weighted_score(criteria_evaluation) 

return { 

'detailed_evaluation': criteria_evaluation, 

'overall_score': compatibility_score, 

'recommendation': generate_recommendations(compatibility_score) 

} 

 

Migration Strategy and Architecture 

Architectural Components 

A well-architected solution with proper usage of managed AWS services is extremely important for 

successfully migrating to a serverless solution. The architecture consists of different layers, all serving specific 

purposes in the journey of creating something scalable, maintainable, and cost-effective. At the client side, 

the entry will be handled with API Gateway or Application Load Balancer for incoming requests with 

authentication and authorization through Cognito. API versioning would also be performed at this tier, along  



Volume 8 Issue 5                                                       @ 2022 IJIRCT | ISSN: 2454-5988 

IJIRCT2501058 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3 

 

with request/response transformation to maintain backwards compatibility during migration. 

The compute layer consists of the core of the serverless architecture, where AWS Lambda functions 

implement business logic and Step Functions will be used to orchestrate more complex workflows. Direct 

invocation capabilities are given through Lambda function URLs, while security is maintained through fine-

grained IAM policies. The data layer will consist of DynamoDB for NoSQL requirements, Aurora Serverless 

for relational data, and S3 for object storage. This will ensure diversity in achieving optimal performance and 

cost-effectiveness for various data access patterns. 

The integration layer provides components with communication via various messaging and event-driven 

services. SQS allows for reliable message queuing in the case of asynchronous processing, while SNS 

provides pub/sub messaging patterns. EventBridge acts as the event router, which enables complex event-

driven architectures that allow for better system decoupling and scalability. 

 

Figure 1: AWS Serverless Migration Decision Flow 

 
 

Serverless Migration Framework and Implementation 

Decision Framework and Service Selection 

The transition to the serverless architecture requires a more holistic decision framework that considers the 

technical capabilities aligned with business requirements. Based on [5], successful migrations to serverless 

start with selecting services carefully while considering the characteristics of a workload. Selection at the 

compute layer forms a basis for decisions, where AWS Lambda is the choice of primary service for event-

driven workloads executing less than 15 minutes. When orchestration requirements become more 



Volume 8 Issue 5                                                       @ 2022 IJIRCT | ISSN: 2454-5988 

IJIRCT2501058 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4 

 

sophisticated, Step Functions will allow the management of long-running workflows, while ECS/Fargate 

offers containerized solutions for applications with long-running requirements. 

Data management in serverless architecture needs to be carefully considered regarding storage patterns and 

access requirements. Most organizations take a multi-faceted approach where S3 is used for object storage 

and static content delivery, DynamoDB for applications requiring consistent low-latency NoSQL access, and 

Aurora Serverless for workloads that require traditional relational database capabilities. This diversified 

storage strategy enables organizations to optimize both performance and cost based on specific data access 

patterns and requirements. 

Serverless architecture also provides out-of-the-box integrations. API Gateway will be your default choice of 

entry point for HTTP/REST APIs, but if your application requires either WebSocket or HTTP/2 support, the 

Application Load Balancer does it all. Then comes EventBridge, which is an extended layer for integrations 

to support complex event-driven architecture; it really simplifies the communications between various AWS 

services and your custom applications. 

 

Architecture Design and Implementation 

This architecture represents a layered approach, trying to utilize maximum benefits of the managed services 

of AWS, with a highly flexible and scalable system. API Gateway and Application Load Balancer act upon 

incoming requests in the client layer. Authentication and authorization can be performed using Cognito. The 

API versioning is pretty sophisticated in this layer, which allows smooth transitioning in case of migration 

with backward compatibility regarding requests/response transformations. 

 

def configure_api_gateway(): 

""" 

Example configuration for API Gateway setup with Cognito integration 

""" 

return { 

'auth': { 

'type': 'COGNITO_USER_POOLS', 

'userPoolId': '${cognito-user-pool}', 

'userPoolClientId': '${client-id}' 

}, 

'cors': { 

'allowOrigins': ['*'], 

'allowMethods': ['OPTIONS', 'POST', 'GET'], 

'allowHeaders': ['Content-Type', 'Authorization'] 

}, 

'version': 'v1' 

} 

 

Migration Strategy and Patterns 

Spillner [6] conducted extensive research in which he reviewed over 15,000 serverless applications running 

in the AWS ecosystem. Successful migrations, he found, follow a structured approach in which gradual 

adoption is emphasized, with mitigated risks. It starts with foundational setup, starting with strong IAM 

configuration to create secure access controls across the serverless infrastructure, including VPC and security 

group configuration, and extensive monitoring with CloudWatch and X-Ray distributed tracing. 



Volume 8 Issue 5                                                       @ 2022 IJIRCT | ISSN: 2454-5988 

IJIRCT2501058 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5 

 

Security implementation in serverless architectures requires a fundamentally different approach compared to 

traditional applications. The reference [5] point out the need to implement IAM permissions for Lambda 

functions at a fine-grained level, use AWS Secrets Manager for secure configuration management, and 

provide comprehensive authentication mechanisms at the API Gateway level. The following code example 

represents a typical IAM configuration for a Lambda function: 

 

def generate_lambda_policy(region: str, account: str, table_name: str, bucket_name: str, secret_name: str) -> 

dict: 

""" 

Generate IAM policy for Lambda function with least privilege access 

 

Args: 

region (str): AWS region 

account (str): AWS account ID 

table_name (str): DynamoDB table name 

bucket_name (str): S3 bucket name 

secret_name (str): Secrets Manager secret name 

 

Returns: 

dict: IAM policy document 

""" 

return { 

"Version": "2012-10-17", 

"Statement": [{ 

"Effect": "Allow", 

"Action": [ 

"dynamodb:GetItem", 

"dynamodb:PutItem", 

"s3:GetObject", 

"secretsmanager:GetSecretValue" 

], 

"Resource": [ 

f"arn:aws:dynamodb:{region}:{account}:table/{table_name}", 

f"arn:aws:s3:::{bucket_name}/*", 

f"arn:aws:secretsmanager:{region}:{account}:secret:{secret_name}" 

] 

}] 

} 

 

Migration Patterns and Best Practices 

The research [1] identify a number of established patterns for serverless migration; one that holds great 

promise for monolithic applications is the Function Decomposition Pattern. This pattern, validated through 

empirical studies conducted in [2], has been shown to yield significant scalability-34% improvement-and cost 

efficiency-up to 45% reduction. The pattern involves a well-principled decomposition of monolithic 

applications into discrete functions while considering the integrity of the business logic. 

Event-Driven Transformation, discussed in [3], is another strong pattern that allows the implementation of  



Volume 8 Issue 5                                                       @ 2022 IJIRCT | ISSN: 2454-5988 

IJIRCT2501058 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6 

 

asynchronous processing capabilities. This naturally leads to greater system resilience, given that coupling 

between components will be loose. As demonstrated in [1], the Strangler Fig Pattern completes these 

approaches by providing gradual migration of functionality, hence keeping business continuity for 

organizations while smoothly transitioning into serverless architecture. 

Common Challenges and Solutions 

Various general challenges that an organization faces while migrating to serverless are documented in the 

empirical research discussed in [4]. State management has challenges like cold start latency impact and 

session handling. Here is one implementation pattern that shows one effective way of maintaining session 

state in a serverless context: 

 

def manage_session_state(session_id): 

""" 

Implementation pattern for session state management 

""" 

session_config = { 

'table': 'SessionState', 

'ttl_attribute': 'expiresAt', 

'encryption': { 

'type': 'AWS_MANAGED', 

'kms_key_id': '${kms-key}' 

} 

} 

return implement_session_handling(session_id, session_config) 

 

Cost optimization demands great care in terms of configuration parameters and resource utilization. [4] 

research shows that the best way to manage costs is by fine-tuning function timeout configurations, memory 

allocation, and payload sizes. In addition, organizations should establish end-to-end monitoring using 

distributed tracing with X-Ray and custom business metrics to maintain visibility and control over their 

serverless infrastructure. 

 

Conclusion 

Migration to AWS serverless architecture should be well-planned and implemented. As was proven in [5], 

structured migration patterns with appropriate security controls lead to better results of the migration 

performed by an organization. The work in [6] confirms that serverless architectures are capable of providing 

substantial scalability, cost optimization, and operational efficiency advantages if implemented correctly. 

 

References 

1. P. Castro, V. Ishakian, V. Muthusamy and A. Slominski, "The Rise of Serverless Computing," 

Communications of the ACM, vol. 62, no. 12, pp. 44-54, 2019. [Online]. Available: 

https://doi.org/10.1145/3368454 

2. E. Jonas et al., "Cloud Programming Simplified: A Berkeley View on Serverless Computing," 

arXiv:1902.03383, Feb. 2019. [Online]. Available: https://arxiv.org/abs/1902.03383 

3. I. Baldini et al., "Serverless Computing: Current Trends and Open Problems," in Research Advances in 

Cloud Computing, Singapore: Springer, 2017, pp. 1-20. [Online]. Available: https://doi.org/10.1007/978-

981-10-5026-8_1 

https://doi.org/10.1145/3368454
https://arxiv.org/abs/1902.03383
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1


Volume 8 Issue 5                                                       @ 2022 IJIRCT | ISSN: 2454-5988 

IJIRCT2501058 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7 

 

4. A. Eivy, "Be Wary of the Economics of Serverless Cloud Computing," IEEE Cloud Computing, vol. 4, 

no. 2, pp. 6-12, 2017. [Online]. Available: https://doi.org/10.1109/MCC.2017.32 

5. W. Lloyd et al., "Serverless Computing: An Investigation of Factors Influencing Microservice 

Performance," in IEEE International Conference on Cloud Engineering (IC2E), 2018, pp. 159-169. 

[Online]. Available: https://doi.org/10.1109/IC2E.2018.00039 

6. J. Spillner, "Quantitative Analysis of Cloud Function Evolution in the AWS Serverless Application 

Repository," arXiv:1905.04800, May 2019. [Online]. Available:  

https://doi.org/10.48550/arXiv.1905.04800 

https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.48550/arXiv.1905.04800

