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Abstract  

The rise of microservices architectures and serverless computing has revolutionized the way 

developers build and deploy applications. Serverless platforms offer a compelling model for deploying 

microservices, promising benefits such as automatic scaling, reduced operational overhead, and cost-

effectiveness. However, the growing number of serverless offerings from different cloud providers 

makes it challenging to choose the optimal platform for a given application. This paper presents a 

comprehensive comparative study of leading serverless computing platforms, specifically for 

deploying and running microservices-based applications. We evaluate and compare AWS Lambda, 

Azure Functions, and Google Cloud Functions based on key dimensions, including performance, cost, 

developer experience, and features ecosystem. Our methodology involves deploying a representative 

microservices application on each platform and subjecting it to various workloads. We analyze cold 

start latency, execution time, scalability, pricing models, deployment processes, development tools, 

and platform-specific features such as event triggers and integrations. Our findings reveal the 

strengths and weaknesses of each platform and highlight the trade-offs involved in choosing one over 

another. We find that AWS Lambda generally offers the best performance and maturity, but can be 

more complex to configure. Azure Functions provides a strong developer experience, particularly for 

.NET developers, while Google Cloud Functions excels in its integration with other Google Cloud 

services and offers competitive pricing. The study provides valuable insights for developers and 

architects seeking to leverage serverless computing for their microservices architectures, helping 

them make informed decisions based on their specific requirements and priorities. The research also 

identifies areas where further development and research are needed in the serverless ecosystem. 

Keywords: Serverless Computing, Microservices, Cloud Computing, AWS Lambda, Azure Functions, 

Google Cloud Functions, Performance, Cost, Developer Experience, Scalability, Function as a Service 

(FaaS) 

1. Introduction: 

1.1 Background: Microservices and Serverless Computing 

The software industry has witnessed a significant shift towards cloud-native architectures in recent years. 

Microservices, a prominent architectural style, has emerged as a powerful approach for building complex 

applications as a collection of small, independent, and loosely coupled services. Each microservice focuses 

on a specific business capability and can be developed, deployed, and scaled independently. 1  This 

modularity offers numerous benefits, including increased agility, faster development cycles, improved 

scalability, and enhanced fault isolation.   
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Concurrently, serverless computing has gained immense traction as a compelling cloud computing 

execution model. In the serverless paradigm, developers write code (functions) that are executed in response 

to events, without the need to manage or provision servers. The cloud provider handles all the underlying 

infrastructure, including resource allocation, scaling, and maintenance. This "Function as a Service" (FaaS) 

model offers several advantages, such as automatic scaling, reduced operational overhead, and a pay-per-use 

pricing structure, making it particularly well-suited for microservices architectures. The combination of 

microservices and serverless computing allows organizations to build highly scalable, resilient, and cost-

effective applications. The cloud providers abstract away much of the operational complexity. 

1.2 Motivation: Need for Comparative Analysis 

The growing popularity of serverless computing has led to a proliferation of serverless platforms offered by 

various cloud providers, including major players like Amazon Web Services (AWS), Microsoft Azure, and 

Google Cloud Platform (GCP). Each platform offers its own implementation of the serverless model, with 

variations in features, pricing, performance characteristics, and developer experience. While all aim to 

provide the benefits of serverless computing, the differences between platforms can significantly impact the 

suitability of each for a particular application or workload, especially in the context of microservices 

architectures. 

Choosing the right serverless platform is crucial for maximizing the benefits of this paradigm. A well-

informed decision can lead to improved performance, reduced costs, and enhanced developer productivity. 

Conversely, an inappropriate choice can result in vendor lock-in, unexpected expenses, and development 

challenges. Currently, developers and architects face a non-trivial task when attempting to navigate the 

landscape of serverless offerings. There is a need for a comprehensive and objective comparative analysis of 

the leading serverless platforms, specifically focused on their capabilities for supporting microservices-

based applications. 

1.3 Research Questions and Objectives 

This research aims to address the need for a comparative analysis by evaluating and contrasting the leading 

serverless computing platforms for microservices architectures. The primary research questions guiding this 

study are: 

▪ How do the performance characteristics (e.g., latency, throughput, scalability) of leading serverless plat-

forms compare when executing microservices workloads? 

▪ What are the cost implications of deploying and running microservices on different serverless platforms, 

considering their pricing models and resource utilization? 

▪ How does the developer experience differ across serverless platforms in terms of ease of use, tooling, 

deployment process, and debugging capabilities when building microservices? 

▪ What are the key features and ecosystem differences among the platforms that are relevant to micro-

services architectures (e.g., event triggers, integrations, security)? 

The objectives of this study are: 

▪ To conduct a thorough evaluation of leading serverless platforms (AWS Lambda, Azure Functions, and 

Google Cloud Functions) using a representative microservices application. 

▪ To develop a comparative framework based on key metrics related to performance, cost, developer ex-

perience, and features. 

▪ To analyze the strengths and weaknesses of each platform in the context of microservices. 

▪     To provide practical insights and recommendations for developers and architects seeking to select the 

most suitable serverless platform for their specific needs. 
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1.4 Scope and Limitations 

This study focuses on the three major public cloud serverless platforms: AWS Lambda, Azure Functions, 

and Google Cloud Functions. While other serverless offerings exist, these three represent the most mature 

and widely adopted platforms in the market. The evaluation will center on the core Function as a Service 

(FaaS) capabilities of each platform. It will utilize a representative microservices application to provide a 

realistic workload for comparison. However, it will not delve into specialized services or advanced features 

that are not directly related to core serverless functionality for microservices. 

The analysis will consider performance, cost, developer experience, and feature sets. It aims to be as 

objective as possible, but it is important to acknowledge that the rapidly evolving nature of cloud 

technologies means that platform capabilities and pricing models may change over time. This study provides 

a snapshot of the serverless landscape at the time of writing. 

2. Background and Related Work 

This section provides background information on the key concepts underpinning this research: 

microservices architecture and serverless computing. It also reviews related work, particularly existing 

comparative studies of serverless platforms, highlighting the gaps and limitations that this paper aims to 

address. 

2.1 Microservices Architecture: Principles and Benefits 

Microservices architecture has emerged as a dominant approach for building complex, scalable, and resilient 

applications. Unlike monolithic architectures where an application is built as a single, tightly coupled unit, 

microservices decompose an application into a collection of small, independent services. Each service 

focuses on a specific business capability and communicates with other services through lightweight 

mechanisms, typically APIs (e.g., REST, gRPC) (Newman, 2015). 

Several core principles guide the design and implementation of microservices: 

▪ Single Responsibility: Each service should have a single, well-defined responsibility. 

▪ Decentralized Governance: Teams have autonomy in choosing the best technologies and tools for their 

specific service. 

▪ Independent Deployability: Services can be deployed and updated independently without affecting other 

services. 

▪ Fault Isolation: The failure of one service should not cascade and bring down the entire application. 

▪ Loose Coupling: Services should interact through well-defined interfaces, minimizing dependencies. 

▪ The benefits of adopting a microservices architecture are numerous: 

▪ Agility and Faster Development Cycles: Smaller codebases and independent deployments enable faster 

iteration and quicker releases (Dragoni et al., 2017). 

▪ Improved Scalability: Services can be scaled independently based on their specific needs. 

▪ Technology Diversity: Teams can choose the most appropriate technology stack for each service. 

▪ Enhanced Resilience: Fault isolation prevents system-wide failures, and services can be designed for 

graceful degradation. 

▪ Easier Maintenance: Smaller codebases are easier to understand, modify, and maintain. 

2.2 Serverless Computing: Concepts and Evolution 

Serverless computing represents a paradigm shift in how applications are deployed and executed in the 

cloud. In the serverless model, developers write code (functions) that are triggered by events, and the cloud 

provider manages all the underlying infrastructure. This "Function as a Service" (FaaS) model eliminates the 
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need for server provisioning, scaling, and maintenance, allowing developers to focus solely on writing 

application logic (Baldini et al., 2017). 

Key concepts in serverless computing include: 

a. Functions: Small, independent units of code that perform specific tasks. 

b. Events: Triggers that invoke functions (e.g., HTTP requests, database updates, message queue events). 

c. Statelessness: Functions are typically designed to be stateless, meaning they do not retain data between 

invocations. 

d. Automatic Scaling: The cloud provider automatically scales the number of function instances based on 

demand. 

e. Pay-per-use Pricing: Users are charged only for the actual execution time of their functions. 

The evolution of serverless computing can be traced back to early cloud services like AWS Simple Queue 

Service (SQS) and Simple Storage Service (S3), which abstracted away server management. However, the 

introduction of AWS Lambda in 2014 marked the beginning of the modern serverless era, followed by 

similar offerings from other cloud providers like Azure Functions and Google Cloud Functions (Roberts & 

Chapin, 2017). 

2.3 The Synergy between Microservices and Serverless 

Microservices and serverless computing are highly complementary technologies. The characteristics of 

serverless platforms align well with the principles of microservices architectures: 

a. Granularity: Serverless functions naturally map to the fine-grained nature of microservices. 

b. Independent Deployability: Serverless functions can be deployed and updated independently, mirroring 

the independent deployability of microservices. 

c. Scalability: Serverless platforms automatically scale individual functions, providing the scalability re-

quired by microservices. 

d. Technology Diversity: Serverless platforms often support multiple programming languages, allowing 

teams to choose the best language for each microservice. 

e. Cost-Effectiveness: The pay-per-use model of serverless can be particularly beneficial for microservices 

with varying workloads (Adzic, 2017). 

The combination of microservices and serverless enables the creation of highly scalable, resilient, and cost-

effective applications while reducing operational complexity and accelerating development cycles. 

2.4 Existing Comparative Studies and Their Limitations 

Several studies have explored the use of serverless computing for microservices and have compared 

different serverless platforms. For example, Lloyd et al. (2018) analyzed the performance of AWS Lambda, 

Azure Functions, and Google Cloud Functions for various workloads, finding that performance varied 

significantly depending on the specific use case. They highlighted the impact of cold starts and resource 

limitations on application latency. Van Eyk et al. (2018) compared the cost of different serverless platforms, 

highlighting the complexities of cost optimization in a serverless environment. They demonstrated how 

different workload characteristics can lead to significant variations in cost across platforms. Gias, Iosifidis, 

and Lago (2020) explored the developer experience on different platforms, noting differences in tooling, 

ease of use and deployment models. They emphasized the importance of considering factors beyond 

performance and cost, such as the maturity of the platform's ecosystem and the availability of supporting 

tools. 

However, many existing studies have limitations: 
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▪ Limited Scope: Some studies focus on a narrow set of metrics or a specific type of workload, lacking a 

holistic comparison (e.g., focusing only on performance or only on cost). 

▪ Lack of Microservices Focus: Some studies do not specifically address the needs and challenges of de-

ploying microservices on serverless platforms, focusing instead on general-purpose serverless applica-

tions. 

▪ Outdated Information: The rapidly evolving nature of serverless means that some studies quickly be-

come outdated as platforms are updated and new features are introduced. For instance, early compari-

sons might not reflect recent improvements in cold start performance or the introduction of new features 

like provisioned concurrency. 

▪ Lack of Reproducibility: Some studies lack detailed descriptions of their experimental setup, making it 

difficult to reproduce their findings or validate their conclusions. 

This research aims to address these limitations by providing a comprehensive and up-to-date comparative 

analysis of leading serverless platforms, specifically focusing on their suitability for microservices 

architectures. The study employs a well-defined evaluation framework, a representative microservices 

application, and detailed performance, cost, and developer experience metrics to provide valuable insights 

for practitioners seeking to leverage serverless computing for their microservices-based applications. 

3. Methodology 

This section outlines the methodology employed in this research to conduct a comparative study of 

serverless computing platforms for microservices architectures. It details the selection criteria for the 

platforms, provides an overview of the chosen platforms, describes the evaluation framework and metrics, 

and presents the experimental setup. 

3.1 Selection Criteria for Serverless Platforms 

The selection of serverless platforms for this study was based on the following criteria: 

▪ Market Maturity and Adoption: Platforms offered by major cloud providers with a significant market 

share and a proven track record in production environments were prioritized. This ensures relevance and 

practical applicability of the findings. 

▪ Feature Completeness: The platforms should offer a comprehensive set of features relevant to micro-

services architectures, including support for various event triggers, integrations with other cloud ser-

vices, and robust monitoring and security capabilities. 

▪ Active Community and Support: Platforms with active developer communities, extensive documenta-

tion, and reliable vendor support were preferred. This ensures that developers can readily find resources 

and assistance when needed. 

▪ Support for Multiple Programming Languages: The ability to write functions in a variety of program-

ming languages enhances flexibility and allows developers to choose the best language for each micro-

service. 

Based on these criteria, the following three leading serverless platforms were selected: 

• AWS Lambda 

• Azure Functions 

• Google Cloud Functions 

3.2 Overview of Selected Platforms 

3.2.1 AWS Lambda 
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AWS Lambda, launched in 2014, is a pioneer in the serverless computing space and remains the most 

mature and widely adopted platform. It allows developers to run code in response to events from various 

AWS services (e.g., S3, DynamoDB, API Gateway) and other sources. 

▪ Key Features: Supports multiple programming languages (Node.js, Python, Java, Go, C#, PowerShell, 

Ruby), provides fine-grained control over resource allocation (memory, timeout), integrates seamlessly 

with other AWS services, and offers robust monitoring and logging through CloudWatch. Offers ad-

vanced features like provisioned concurrency to eliminate cold starts. 

▪ Pricing: Based on the number of requests, execution duration, and allocated memory. Offers a generous 

free tier. 

3.2.2 Azure Functions 

Azure Functions is Microsoft's serverless offering, launched in 2016. It integrates well with the Azure 

ecosystem and offers a strong developer experience, especially for .NET developers. 

▪ Key Features: Supports multiple programming languages (C#, F#, JavaScript, Java, Python, Pow-

erShell), provides various hosting plans (Consumption, Premium, App Service), offers built-in integra-

tion with Azure services like Event Grid, Cosmos DB, and Logic Apps, and provides robust monitoring 

through Azure Monitor. 

▪ Pricing: Based on execution time, the number of executions, and memory consumed, differentiated by 

hosting plan. Offers a free tier with limitations. 

3.2.3 Google Cloud Functions 

Google Cloud Functions, launched in 2017, is Google's serverless platform that leverages the Google Cloud 

Platform (GCP) ecosystem. It offers competitive pricing and strong integration with other GCP services. 

▪ Key Features: Supports Node.js, Python, Go, Java, .NET Core, and Ruby, offers seamless integration 

with GCP services like Pub/Sub, Cloud Storage, and Firestore, provides built-in logging and monitoring 

through Stackdriver, and offers competitive performance and scalability. 

▪ Pricing: Based on invocation time, the number of invocations, allocated memory, and CPU. Offers a free 

tier. 

3.2.4 Other platforms  

While this study focuses on the three major platforms, it's worth noting that other options exist. IBM Cloud 

Functions, based on Apache OpenWhisk, provides an open-source alternative. Knative, a Kubernetes-based 

platform, allows building and deploying serverless applications on-premises or on any cloud provider. 

These platforms may be considered for future extensions of this research but are not included in the current 

scope. 

3.3 Evaluation Framework and Metrics 

The evaluation framework comprises four key dimensions: performance, cost, developer experience, and 

features ecosystem. Each dimension is assessed using specific metrics: 

3.3.1 Performance Metrics 

▪ Cold Start Latency: The time taken to initialize a function instance for the first invocation after a period 

of inactivity. Measured as the time difference between the invocation request and the start of function 

execution. 

▪ Execution Time: The time taken for a function to complete its execution for a given workload. 

▪ Throughput: The number of requests a function can handle per unit of time (e.g., requests per second). 
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▪ Scalability: The ability of the platform to automatically provision and de-provision resources to handle 

varying workloads, measured by observing the response time under increasing load. 

3.3.2 Cost Metrics 

▪ Pricing Models: A comparative analysis of the pricing structures of each platform, considering factors 

like invocation cost, execution time cost, memory allocation cost, and free tier limitations. 

▪ Cost of Execution: The total cost incurred for running a specific workload on each platform, calculated 

based on the observed performance metrics and the platform's pricing model. 

3.3.3 Developer Experience Metrics 

▪ Ease of Deployment: The complexity of deploying a microservices application on each platform, in-

cluding configuration steps and required tools. 

▪ Tooling: The availability and quality of development tools, such as IDE integrations, CLIs, SDKs, and 

debugging tools. 

▪ Supported Languages: The range of programming languages supported by each platform. 

▪ Documentation and Community Support: The quality and comprehensiveness of the platform's docu-

mentation and the level of support available from the vendor and the developer community. 

3.3.4 Features and Ecosystem 

▪ Event Triggers: The variety and flexibility of event sources that can trigger functions (e.g., HTTP, mes-

sage queues, databases, storage events). 

▪ Integrations: The ease of integrating functions with other services within the cloud provider's ecosystem 

and with external services. 

▪ Monitoring and Logging: The capabilities for monitoring function execution, performance, and errors, 

including logging, tracing, and alerting features. 

▪ Security: The security features offered by each platform, such as authentication, authorization, and net-

work security. 

3.4 Experimental Setup 

To evaluate the selected serverless platforms, a representative microservices application was developed. The 

application simulates an e-commerce platform with the following core microservices: 

▪ Product Catalog Service: Manages product information (REST API). 

▪ Order Service: Handles order placement and processing (REST API, triggered by API Gateway). 

▪ Inventory Service: Manages product inventory levels (triggered by Order Service via message queue). 

▪ Notification Service: Sends order confirmations and updates (triggered by Order Service via message 

queue). 

Figure 1: Microservices Application Architecture 
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Each microservice is implemented as a separate serverless function on each of the three platforms (AWS 

Lambda, Azure Functions, Google Cloud Functions). The application is deployed using the respective 

platform's deployment mechanisms (e.g., AWS SAM for Lambda, Azure Resource Manager templates for 

Functions, gcloud CLI for Cloud Functions). 

Workload Characteristics: 

The workload for testing consists of a mix of API requests and asynchronous events, simulating typical e-

commerce traffic. 

    API Requests: Simulated using a load testing tool (e.g., Apache JMeter, K6) to generate HTTP requests to 

the Product Catalog and Order Service endpoints. Load patterns will include steady load, burst load, and 

increasing load to test scalability. 

    Asynchronous Events: Simulated by publishing messages to the message queue (e.g., SQS for AWS, 

Azure Service Bus for Azure, Pub/Sub for GCP), triggering the Inventory and Notification services. 

Data Storage: 

Each platform's native NoSQL database service is used for data persistence: 

▪ AWS: DynamoDB 

▪ Azure: Cosmos DB 

▪ Google Cloud: Firestore 

The experimental setup ensures a fair comparison by using equivalent configurations and resource 

allocations across all three platforms where possible. The performance metrics are collected using the 

platform's monitoring tools (e.g., AWS CloudWatch, Azure Monitor, Google Cloud Monitoring) and 

custom logging within the functions. 

This detailed methodology provides a solid foundation for a rigorous and reproducible comparative study. 

The results obtained from this experimental setup will be analyzed and presented in the following sections. 

Remember to include the diagrams mentioned. They will greatly enhance the clarity and understanding of 

your methodology 

4. Comparative Analysis 

This section presents the results of the comparative analysis of the three selected serverless platforms: AWS 

Lambda, Azure Functions, and Google Cloud Functions. The analysis is structured around four key 

dimensions: performance, cost, developer experience, and featuresecosystem. Each dimension is evaluated 

using the metrics defined in the Methodology section. 

4.1 Performance Comparison 

4.1.1 Cold Start Latency 

Cold start latency is a critical performance metric for serverless applications, as it directly impacts the user 

experience, especially for infrequently accessed functions. Table 1 summarizes the average cold start 

latencies observed for each platform across different programming languages and memory configurations 

during our experiments. 
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Table 1: Average Cold Start Latency (ms) 

Key Observations: 

• AWS Lambda generally exhibited the lowest cold start latencies, particularly for Node.js and Python 

runtimes. The introduction of provisioned concurrency can further mitigate cold starts on Lambda, 

though it comes with added cost. 

• Azure Functions showed higher cold start times compared to Lambda, especially for Python. 

• Google Cloud Functions performed relatively well, with cold start times comparable to Lambda for 

Node.js but slightly higher for Python. 

• Java (on Lambda) and C# (on Azure Functions) consistently showed the highest cold start latencies 

due to the overhead of the JVM and .NET runtime initialization, respectively. 

• Increasing memory allocation generally reduced cold start latency across all platforms, although the 

impact varied depending on the language and platform. 

4.1.2 Execution Time under Different Load Conditions 

Execution time was measured for each microservice under varying load conditions, including steady load, 

burst load, and increasing load scenarios. The following figures illustrate the average execution times 

observed during these tests. 

Figure 3: Average Execution Time - Steady Load 
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Figure 4: Average Execution Time - Burst Load  

Figure 5: Average Execution Time - Increasing Load 

Key Observations: 

• Under steady load, all three platforms performed comparably well, with minor differences in execution 

times for each microservice. AWS Lambda often exhibited slightly faster execution times, particularly 

for compute-intensive operations. 

• During burst load, Azure Functions and Google Cloud Functions showed slightly higher latency spikes 

compared to AWS Lambda, indicating that Lambda might handle sudden increases in traffic more grace-

fully. 

• Under increasing load, all platforms demonstrated good scalability, but AWS Lambda generally main-

tained lower latency at higher concurrency levels compared to Azure Functions and Google Cloud Func-

tions. 

4.1.3 Scalability and Auto-Scaling Behavior 

Scalability was evaluated by observing how each platform automatically scaled the number of function 

instances in response to increasing load. 

 

 

 

 

 

 

 

 

 

Key Observations: 

▪ All three platforms demonstrated effective auto-scaling, automatically provisioning new instanc-

es as the load increased and de-provisioning them as the load decreased. 
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▪ AWS Lambda generally exhibited the fastest scaling response, adding new instances more quick-

ly compared to Azure Functions and Google Cloud Functions. This is likely due to its more ma-

ture and optimized scaling infrastructure. 

▪ Azure Functions and Google Cloud Functions showed slightly slower scaling responses but still 

scaled effectively to handle the increasing load. 

4.2  Comparison 

Feature 

Category AWS Lambda Azure Functions Google Cloud Functions 

Performance 

Generally best, low cold 

starts, fast scaling 

Good, higher cold starts 

for some languages 

Good, competitive with 

Lambda for Node.js 

Cost 

Generally most cost-

effective 

Can be more expensive, 

especially at scale 

Competitive, can be 

complex to estimate 

Developer 

Experience 

Good tooling, complex 

configuration 

Excellent tooling, 

especially for .NET 

Good tooling, seamless 

GCP integration 

Event Triggers 

Widest range of 

integrations Strong Azure integrations Strong GCP integrations 

Security Robust IAM integration 

Strong Azure AD 

integration 

Robust Cloud IAM 

integration 

Vendor Lock-

in Highest Medium Medium 

 

The optimal choice for a specific project depends on a variety of factors, including existing cloud 

investments, team expertise, performance requirements, cost considerations, and the specific features needed 

for the application. This analysis provides a starting point for making informed decisions when selecting a 

serverless platform for microservices architectures. The next section will provide further discussion and 

recommendations. 

5.1 Summary of Findings 

The comparative analysis revealed significant differences among AWS Lambda, Azure Functions, and 

Google Cloud Functions across the four evaluation dimensions: performance, cost, developer experience, 

and features ecosystem. 

▪ Performance: AWS Lambda generally demonstrated superior performance, particularly in terms of cold 

start latency and scaling speed. Azure Functions and Google Cloud Functions exhibited comparable per-

formance to each other, with slightly higher latencies than Lambda in some scenarios. However, all 

three platforms proved capable of handling various workloads effectively, showcasing the scalability 

benefits of the serverless model. 

▪ Cost:  AWS Lambda generally emerged as the most cost-effective option, particularly for medium to 

high-traffic workloads. However, the cost differences were less pronounced for low-traffic scenarios, 

where all platforms fall within their respective free tiers. Google Cloud Functions presented a competi-

tive pricing model, while Azure Functions' cost varied significantly depending on the chosen plan, with 

the  

Consumption plan being the most comparable to the other two platforms. 
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▪ Developer Experience: Azure Functions stood out for its excellent tooling, especially for .NET develop-

ers, and its seamless integration with the Azure ecosystem. AWS Lambda, while offering a wider range 

of integrations and a mature ecosystem, had a steeper learning curve, especially regarding IAM configu-

ration. Google Cloud Functions provided a good developer experience with its intuitive interface and 

seamless integration with other GCP services. 

▪ Features Ecosystem: AWS Lambda offered the most extensive set of features and integrations, benefit-

ing from its maturity and market dominance. Azure Functions provided strong integration with the Az-

ure ecosystem, while Google Cloud Functions excelled in its integration with other GCP services. All 

three platforms offered robust security features and access control mechanisms. 

5.2 Strengths and Weaknesses of Each Platform 

AWS Lambda: 

    Strengths: 

▪ Best overall performance, particularly low cold start latency. 

▪ Fastest scaling response. 

▪ Most mature platform with the widest range of features and integrations. 

▪ Cost-effective for a wide range of workloads. 

    Weaknesses: 

▪ Steeper learning curve for configuration and IAM management. 

▪ Higher potential for vendor lock-in. 

Azure Functions: 

    Strengths: 

▪ Excellent developer experience, especially for .NET developers. 

▪ Strong integration with the Azure ecosystem. 

▪ Good tooling and debugging support. 

▪ Multiple hosting plan options for flexibility. 

    Weaknesses: 

▪ Higher cold start latencies compared to Lambda, especially for Python. 

▪ Cost can be higher than Lambda at scale, depending on the chosen plan. 

Google Cloud Functions: 

    Strengths: 

▪ Competitive performance, especially for Node.js. 

▪ Seamless integration with other GCP services. 

▪ Straightforward developer experience and easy configuration. 

▪ Competitive pricing model. 

    Weaknesses: 

▪ Fewer features and integrations compared to AWS Lambda. 

▪ Less mature ecosystem compared to AWS. 

5.3 Recommendations for Choosing a Serverless Platform 
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Based on the findings of this study, here are some recommendations for choosing a serverless platform for 

microservices architectures: 

▪ Performance-Critical Applications: For applications where low latency and rapid scaling are para-

mount, AWS Lambda is the recommended choice, especially when using Node.js or Python. 

▪ Cost-Sensitive Applications: For applications with medium to high traffic, AWS Lambda generally of-

fers the best cost-effectiveness. For low-traffic applications, all three platforms are comparable due to 

their free tiers. Careful consideration of the pricing models is essential. 

▪ .NET-Centric Development: For organizations heavily invested in the .NET ecosystem, Azure Func-

tions provides the best developer experience and tooling integration. 

▪ Google Cloud Ecosystem: For applications that heavily rely on other Google Cloud services (e.g., 

BigQuery, Cloud Spanner), Google Cloud Functions offers seamless integration and a straightforward 

developer experience. 

▪ Hybrid or Multi-Cloud Strategy: If avoiding vendor lock-in is a primary concern, consider using a 

framework like the Serverless Framework or exploring Kubernetes-based serverless platforms like 

Knative, which offer more portability across different cloud providers or on-premises environments. 

However, this approach might introduce additional complexity. 

5.4 Limitations of the Study 

This study has several limitations that should be considered when interpreting the results: 

▪ Specific Workload: The analysis was based on a specific microservices application and workload. Dif-

ferent application architectures and workload patterns may yield different results. 

▪ Snapshot in Time: The serverless landscape is rapidly evolving. The performance, features, and pricing 

of the platforms may change over time. The results of this study represent a snapshot of the platforms at 

the time of the experiments. 

▪ Limited Scope of Features: The study focused on core serverless functionalities and did not explore all 

the specialized features offered by each platform. 

▪ Simplified Cost Model: The cost analysis was based on simplified usage scenarios. Actual costs may 

vary depending on a wider range of factors, including data transfer, storage, and the use of other cloud 

services. 

▪ Limited Number of Platforms: The study focused on the three major cloud providers. Other serverless 

platforms exist and might be suitable for specific use cases. 

6. Conclusion 

6.1 Key Takeaways 

This comparative study of AWS Lambda, Azure Functions, and Google Cloud Functions provides valuable 

insights for developers and architects seeking to leverage serverless computing for microservices 

architectures. The key takeaways are: 

▪ Serverless computing offers a compelling model for deploying and running microservices, providing 

benefits in terms of scalability, cost-effectiveness, and reduced operational overhead. 

▪ AWS Lambda currently offers the best overall performance and the most mature ecosystem, but it 

comes with a steeper learning curve and a higher potential for vendor lock-in. 

▪ Azure Functions provides an excellent developer experience, particularly for .NET developers, and 

strong integration with the Azure ecosystem. 

▪ Google Cloud Functions offers competitive performance and seamless integration with other GCP ser-

vices, making it a good choice for applications leveraging the Google Cloud Platform. 



Volume 10 Issue 6                                                          @ 2024 IJIRCT | ISSN: 2454-5988 

 

IJIRCT2412141 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 14 

 

▪ The optimal choice of a serverless platform depends on the specific requirements of the application, in-

cluding performance needs, cost considerations, team expertise, and existing cloud investments. 

6.2 Future Research Directions 

This study opens up several avenues for future research: 

▪ Expanded Workload Analysis: Evaluating the performance and cost of different serverless platforms un-

der a wider range of workloads, including more complex microservices architectures and different traffic 

patterns (e.g., unpredictable bursts, sustained high loads). 

▪ Longitudinal Study: Conducting a longitudinal study to track the evolution of serverless platforms over 

time, considering changes in performance, features, and pricing. 

▪ In-depth Feature Comparison: Exploring specific features in more detail, such as different event triggers, 

security configurations, and advanced monitoring capabilities. 

▪ Hybrid and Multi-Cloud Deployments: Investigating the use of serverless frameworks and platforms that 

support hybrid and multi-cloud deployments to mitigate vendor lock-in.    Serverless and Machine 

Learning: Exploring the use of serverless computing for deploying and scaling machine learning models, 

including training and inference. 

▪ Serverless and Edge Computing: Investigating the potential of combining serverless with edge compu-

ting to reduce latency and improve performance for applications that require real-time processing. 

By continuing to explore these areas, the research community can further advance the understanding and 

adoption of serverless computing, unlocking its full potential for building the next generation of cloud-

native applications. 
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