
Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Agile vs. Waterfall: A Comprehensive Analysis of

Software Testing Methodologies

Chandra Shekhar Pareek

Independent Researcher

New Providence, New Jersey, USA

chandrashekharpareek@gmail.com

Abstract

Software testing is an indispensable pillar in the software development lifecycle, guaranteeing the

functionality, robustness, and security of applications. The two most predominant frameworks for

executing software testing are the Traditional (Waterfall) model and the Agile paradigm. This paper

delves into the core distinctions between these methodologies, focusing on their testing philosophies,

workflows, and operational practices. By scrutinizing their defining characteristics, benefits, and

constraints, this comparative analysis offers an in-depth exploration of how each methodology tackles

quality assurance and its significance in the context of contemporary software engineering.

Keywords: Agile Methodology, Waterfall Method, Quality Assurance

1. Introduction

In the realm of modern software engineering, ensuring the integrity, resilience, and security of applications

is a fundamental concern that permeates the entire development lifecycle. Software testing is the critical

discipline responsible for validating that applications perform according to specified requirements, meet

end-user expectations, and comply with regulatory standards. As software systems grow in complexity and

scale, the approaches to testing have similarly evolved, giving rise to two dominant paradigms in

contemporary practice: the Traditional Waterfall model and the Agile methodology. Each of these

frameworks offers a distinct approach to software testing, shaped by their respective development

philosophies and operational dynamics.

The Traditional Waterfall model—a cornerstone of legacy software development—follows a rigid,

sequential process in which each phase of development must be completed before proceeding to the next.

This prescriptive methodology involves comprehensive documentation, detailed upfront planning, and a

strictly defined scope, with testing relegated to a distinct phase post-development. In the Waterfall

framework, testing serves as a final gate to validate the software’s functionality and adherence to

requirements, making it predominantly a summative activity. While this structured approach can be highly

effective in scenarios with stable and well-defined requirements, it tends to be less adaptable to changes in

scope, making it less suited for dynamic or rapidly evolving projects.

On the other hand, the Agile methodology represents a paradigm shift towards adaptive, iterative, and

collaborative development. Agile promotes an incremental approach, where software is developed and

tested in short, iterative cycles or "sprints," allowing for continuous integration and frequent delivery of

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

working software. Testing in Agile is deeply interwoven into the development process itself, with QA

activities occurring in tandem with design, coding, and deployment. In contrast to Waterfall’s post-

development testing phase, Agile encourages continuous feedback loops, wherein testing occurs as an

ongoing activity throughout the project lifecycle. This integration of testing ensures that defects are detected

early, reducing the cost of defect correction, and enabling rapid responses to changing business

requirements.

Despite their philosophical divergence, both Waterfall and Agile methodologies aim to achieve the same

end goal: the delivery of high-quality, reliable software. However, the contrasting approaches to testing—

where Waterfall emphasizes rigid structure and extensive upfront planning, and Agile focuses on flexibility,

continuous feedback, and collaboration—offer distinct trade-offs in terms of efficiency, adaptability, and

stakeholder engagement. This paper explores the underlying principles, processes, and practices that

differentiate these two paradigms, providing an in-depth comparison of their testing strategies. By

examining their respective strengths, limitations, and real-world applicability, this analysis seeks to

illuminate the relevance of each approach in the context of contemporary software development, where

agility, speed-to-market, and customer-centricity have become paramount.

2. Waterfall Methodology

The Waterfall model is one of the most entrenched and classical software development methodologies,

characterized by its methodical, linear progression through a series of discrete phases. The model’s hallmark

is its strict, phase-by-phase approach, where each phase is completed in its entirety before moving to the

next. This rigid, sequential structure stands in stark contrast to more contemporary, flexible approaches like

Agile. Within the Waterfall paradigm, testing is treated as a distinct, post-development activity that occurs

after the full system has been implemented. While effective in projects with stable, well-defined

requirements, its inflexibility and delayed defect discovery make it less suited to environments where rapid

changes or iterative adjustments are commonplace. Nonetheless, understanding the Waterfall model’s

testing framework is essential for appreciating the evolution of software testing methodologies.

2.1 Phases of the Waterfall Model

The Waterfall methodology is segmented into the following key phases:

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

Requirements Gathering

In this initial phase, all system requirements—both functional and non-functional—are meticulously

documented and analyzed. The requirements form the bedrock for both the development and testing

processes. Test cases and scenarios are often conceived during this stage, based on the specifications

outlined in the requirement documentation. The requirement phase serves as a critical input for testing, as it

outlines precisely what must be validated within the software system.

System and Software Design

During the design phase, the system’s architecture, high-level design, and low-level components are

defined. The design documents detail the technical specifications, system architecture, and integration

points. Testing here is more about ensuring the design’s robustness and feasibility, with the goal of

identifying potential testability concerns early. Testers may conduct preliminary reviews of design

documents, evaluating them for completeness, accuracy, and alignment with initial requirements.

Implementation (Coding)

The implementation phase involves the actual development of the software system based on the design

specifications. At this point, developers write and compile the system's source code, adhering strictly to the

requirements outlined in the earlier phases. Testing is largely deferred during this stage, with only unit tests

being executed to validate individual code units. These unit tests are typically the responsibility of the

development team, while formal testing does not begin until the development is considered complete.

Testing (Verification)

Testing in the Waterfall model is treated as an independent phase, typically initiated only after the entire

software product has been developed. This phase includes a comprehensive series of verification activities,

such as unit testing, integration testing, system testing, and user acceptance testing (UAT).

• Unit Testing: Although unit tests may be performed during the coding phase, formal verification of

individual components is part of the testing phase, ensuring that each unit functions correctly within the

context of the whole system.

• Integration Testing: This phase focuses on validating the interoperability of various components that

have been developed in isolation, ensuring that all parts of the system work together as intended.

• System Testing: System testing evaluates the entire software system in a holistic manner, confirming that

the application meets all specified requirements, including performance, security, and scalability.

• Acceptance Testing: In the final step of the testing phase, user acceptance testing (UAT) is performed,

usually by the client or end-users, to validate that the software aligns with their needs and requirements.

Deployment (Release)

Once the software has passed the testing phase, it is deployed to the production environment. This phase

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

involves making the product available to users, often after a final round of system validation to ensure the

deployment does not introduce any unforeseen issues.

Although formal testing concludes at the end of the deployment phase, regression tests or patches may be

necessary post-release to address any issues identified after the software is live.

Maintenance

Post-deployment, the software enters a maintenance phase, where the system undergoes updates, bug fixes,

and improvements based on user feedback or performance monitoring. Maintenance testing focuses on

patching vulnerabilities, upgrading functionality, and ensuring that new changes do not disrupt existing

capabilities. Regression testing is frequently employed to ensure that new updates do not introduce defects

into previously stable features.

2.2 Core Characteristics of Waterfall Software Testing

• Linear and Prescriptive Structure

The Waterfall model dictates a rigid, linear progression through each phase of the software lifecycle, with

each phase strictly completed before the next begins. Testing, in particular, is a standalone activity,

occurring only after the entire system has been implemented. This structure provides clarity and discipline

but can significantly slow down response times when issues arise late in the process.

• Late-Stage Defect Discovery

A significant challenge of Waterfall testing is the delayed discovery of defects. Since testing is only

introduced after the development phase is complete, issues are often not detected until the final testing stage.

The late discovery of bugs can lead to substantial rework, extending the development timeline and

increasing costs.

• Comprehensive Documentation

The Waterfall approach places a heavy emphasis on documentation. Test plans, test cases, and detailed

reporting are created upfront, often as part of the initial project documentation. This documentation serves

as the foundation for all testing activities, ensuring that the system is rigorously validated. However, this

reliance on extensive documentation can result in a slow, bureaucratic process that lacks the flexibility

required in fast-changing environments.

• Requirement-Centric Testing

Waterfall testing is intrinsically linked to the requirements defined in the early phases of the project. The

test cases are derived directly from the requirements documentation, and the software is validated against

these predefined specifications. The inflexibility of the process means that changes to requirements during

the later stages of development are difficult and expensive to accommodate.

• Heavy Upfront Planning:

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

One of the defining aspects of Waterfall testing is its reliance on extensive upfront planning. Detailed test

cases, plans, and scripts are developed at the outset of the project based on the initial requirements. This

heavy planning ensures a structured approach to testing, but it also reduces the flexibility to accommodate

changes or adapt to new insights during the development process.

2.3 Challenges of Waterfall Software Testing

• Inflexibility: Waterfall’s strictly sequential approach can prove problematic in projects where

requirements evolve or where unexpected changes occur. Once the development phase begins, changes

to scope or functionality are difficult to implement without triggering extensive rework.

• Delayed Feedback and Increased Cost of Defects: The late testing phase delays feedback, making

defect correction more expensive. The further along the development cycle the defect is discovered, the

more disruptive and costly it becomes to fix.

• Bureaucratic and Time-Consuming: The extensive documentation and rigorous planning associated

with Waterfall can slow down the process, making it difficult to adapt to fast-moving market demands.

The methodology is also cumbersome when dealing with complex, rapidly evolving software

requirements.

• Not Ideal for Complex or Evolving Systems: For projects that are expected to undergo significant

changes or require iterative development, Waterfall’s rigid structure becomes a bottleneck. This makes it

less suited for dynamic, complex systems where ongoing iteration and adaptation are critical.

3. Agile Software Testing: Iterative and Incremental Approach

Agile software testing is a cornerstone of the Agile methodology, fundamentally reimagining the testing

process by embedding it into every stage of the software development lifecycle. Diverging from traditional,

sequential models such as Waterfall, Agile testing advocates for an iterative and incremental approach that

facilitates rapid feedback loops, continuous collaboration, and adaptive responses to changing requirements.

This testing paradigm underscores a seamless integration of testing activities within development sprints,

ensuring consistent validation, continuous delivery, and real-time defect resolution. Through this dynamic

approach, Agile testing aligns with the core Agile principles of flexibility, speed, and iterative refinement,

ultimately ensuring the production of robust, high-quality software that can swiftly evolve in response to

both user needs and business demands.

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

3.1 Core Tenets of Agile Software Testing

Iterative and Incremental Delivery

• Agile testing operates within time-boxed iterations or sprints, typically ranging from 1 to 4 weeks,

wherein software increments are developed and immediately subjected to validation. The goal is to

produce a potentially shippable product increment at the end of each sprint, ensuring continuous

alignment with user requirements and business objectives.

• Testing does not follow a singular, final-phase process; instead, it occurs concurrently throughout the

development cycle. Each sprint encapsulates both development and testing, with a specific focus on

validating newly developed features and integrating them with the existing codebase. This methodology

allows for early identification of defects and continuous refinement of functionality, ensuring the

product evolves incrementally without accumulating technical debt.

Shift-Left Testing

• Testing activities are proactively initiated at the outset of the software development lifecycle, aiming to

detect and address defects at the earliest opportunity. Through close collaboration with developers and

business analysts during the requirement analysis and design phases, QA engineers play a pivotal role in

refining user stories and defining clear acceptance criteria, ensuring alignment with both functional and

business objectives.

Test-Driven Development (TDD)

• Test-Driven Development (TDD) is an essential technique in Agile testing, where automated tests are

crafted before the actual code is written. This "test-first" approach ensures that code is developed with a

strong focus on meeting specified requirements and passes predefined acceptance criteria.

• The TDD cycle operates as a loop: first, developers write a failing test, then implement the minimal code

required to pass the test, followed by a refactor phase to optimize the code. This approach inherently

fosters clean, testable code and facilitates rapid defect detection at the earliest possible stage.

Behavior-Driven Development (BDD)

• Behavior-Driven Development (BDD) is an Agile practice that enhances communication and

collaboration between developers, testers, and business stakeholders. By focusing on the behavior of

the system from a user’s perspective, BDD aligns development efforts with business outcomes and

customer expectations. It leverages natural language specifications to define the system’s behavior,

making it more accessible to all team members, regardless of their technical expertise.

Continuous Integration and Continuous Testing

• The Agile ecosystem thrives on Continuous Integration (CI), wherein developers integrate their code into

a shared repository multiple times a day, ensuring that all changes are validated against the most recent

build. This practice minimizes integration issues and accelerates feedback on code quality.

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

• Continuous Testing underpins CI by executing automated test suites against each code integration,

effectively creating a "never-ending feedback loop" that ensures each new change is thoroughly

validated. This enables teams to identify issues early, reducing the risk of accumulating defects and

allowing for timely mitigation before they propagate through the system.

Collaborative Testing and Cross-Functional Synergy

• Agile testing emphasizes collaboration across cross-functional teams, with developers, testers, product

owners, and other stakeholders actively participating in the testing process. This collaborative

environment ensures that testing is not a siloed activity, but a continuous, shared responsibility among

all team members.

• Testers are involved from the outset, participating in sprint planning, requirements definition, and user

story elaboration. This ensures that tests are not only comprehensive but also aligned with business goals

and end-user expectations, allowing for a higher degree of test relevance and efficiency.

User Stories and Acceptance Criteria

• In Agile, features are expressed as user stories, which define functional requirements from an end-user

perspective. Each user story is accompanied by clear acceptance criteria, which specify the conditions

that must be met for the feature to be considered complete and tested.

• These acceptance criteria serve as the foundation for crafting detailed test cases that validate the

functionality of the story. The close linkage between user stories, acceptance criteria, and test cases

ensures that Agile teams are always focused on delivering value from the user’s perspective, validating

not just the code but the business functionality it enables.

Automated Testing and Coverage

• Test automation is a pivotal strategy in Agile testing, as it significantly accelerates regression and

integration testing cycles, enabling testers to focus on more strategic, exploratory testing. The

automation of repetitive test cases ensures that they are executed frequently without manual

intervention, thus freeing up testing resources for more critical tasks.

• Automated testing frameworks are crafted to verify unit, integration, regression, and smoke tests, ensuring

that the core functionality remains intact with every code iteration. Through automation, teams can

ensure broad test coverage and maintain a high degree of quality assurance despite the rapid pace of

Agile development.

Real-Time Feedback and Adaptation

• Agile testing thrives on rapid feedback, which is an integral part of the Agile workflow. After each sprint,

testing results are shared with all stakeholders, enabling continuous adaptation and refinement. Testers

actively report defects, suggest enhancements, and provide feedback on the overall quality of the

product increment.

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 8

• This feedback loop ensures that testing is actionable and adaptive, allowing developers to pivot and adjust

their work based on real-world results rather than theoretical expectations. The feedback cycle enables

teams to continuously fine-tune the software, enhancing both user experience and business alignment.

Exploratory Testing

• While automated tests cover well-defined scenarios, exploratory testing remains a key component of

Agile quality assurance. Testers leverage their domain knowledge, creativity, and intuition to explore the

system beyond predefined test cases, identifying subtle defects and edge cases that might otherwise go

undetected.

• Exploratory testing is not scripted; rather, it is based on the tester’s understanding of the product, their

assumptions, and their focus on the user’s experience. This testing mode is particularly valuable in

uncovering usability issues, security vulnerabilities, and performance bottlenecks.

Quality as a Shared Responsibility

• In Agile, quality is a collective responsibility, not just the remit of the testing team. Developers, testers,

and product owners work together to ensure that every code change adheres to quality standards, passes

test cases, and meets the defined acceptance criteria.

• This cross-functional ownership of quality enhances collaboration, fosters a deeper understanding of the

product, and accelerates defect identification. Quality is not “inspected in” at the end of the development

cycle, but rather built in continuously from the start.

3.2 Challenges in Agile Software Testing

Dynamic and Evolving Requirements

Agile’s flexibility introduces challenges in requirements stability. Frequent changes in user stories,

acceptance criteria, or scope can disrupt the testing process, requiring rapid adjustments to test cases, test

data, and coverage. Testers must stay agile and responsive to these shifts, recalibrating testing strategies as

needed.

Maintaining Test Coverage

Due to the rapid pace of iteration, test coverage can sometimes become fragmented. As new features are

added and old ones are refactored, ensuring that all aspects of the system are tested comprehensively

becomes more challenging. Agile teams must continuously refine their test suite to maintain a high level of

coverage without sacrificing performance or speed.

Integration Complexities

In Agile, software is built incrementally, and frequent integration of new code can sometimes lead to

integration issues. Continuous integration testing helps mitigate this, but the complexity of maintaining

seamless integration across the system as features evolve remains a challenge, particularly in large,

distributed systems.

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 9

Skillset Variability

Agile testing requires testers to possess a wide array of skills, including proficiency in automation

frameworks, continuous integration tools, and deep understanding of the development process. Ensuring that

all team members have the requisite skills for Agile testing can sometimes be challenging, particularly in

teams with varied expertise levels.

4. Comparative Analysis of Waterfall and Agile Methodologies in Software Testing

The following comparative analysis table provides a detailed contrast between the Waterfall and Agile

methodologies in the context of software testing. It highlights key aspects such as approach, testing phases,

flexibility, automation, customer involvement, and scalability, among others. By examining these

dimensions, the table offers a comprehensive overview of how each methodology addresses testing

practices, with a focus on their respective advantages and limitations in modern software development

environments.

Aspect Waterfall Methodology Agile Methodology

Approach

Linear and Sequential:

Testing occurs after the

development phase, following

a fixed sequence.

Iterative and Incremental: Testing is

integrated throughout the development

process, performed in every sprint or

iteration.

Testing Phases

Testing is conducted at the end

of the development phase,

often as a separate phase.

Testing is continuous and occurs at each

sprint (iteration), with daily feedback.

Flexibility

Low flexibility: once a phase

is completed, it is difficult to

go back and make changes.

High flexibility: the product is developed

iteratively, allowing changes after each

sprint.

Test Planning

Extensive upfront test

planning before development

begins. Test plans are rigid

and detailed.

Test planning is ongoing and evolves

throughout the project. Test cases are

written as user stories are developed.

Test Involvement

Testers are involved after the

development phase and focus

on verifying the final product.

Testers are involved from the start,

working alongside developers and product

owners in every sprint.

Feedback Loops

Feedback is collected late,

typically after the testing

phase. Defects are identified

later in the process.

Feedback is continuous, with defects

identified and resolved within each sprint,

allowing real-time adjustments.

Defect

Identification

Defects are typically

discovered late in the process

during the testing phase,

causing delays.

Defects are identified early in the

development cycle, with rapid resolution.

Documentation

Heavy documentation is

produced before testing starts,

outlining detailed test cases

Documentation is lightweight, with user

stories and acceptance criteria being the

primary sources of testing requirements.

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 10

and procedures.

Risk Management

Risk management is more

reactive, occurring when

issues arise late in the project.

Risks are proactively managed with

continuous testing and iteration, allowing

for quick mitigation.

Automation

Test automation typically

begins after development is

completed, often with limited

scope.

Test automation is integrated throughout

the development process, ensuring rapid

regression testing and higher coverage.

Testing Focus

Focused on ensuring that the

final product meets the

specified requirements.

Focused on ensuring that each increment

of the product is functional, with frequent

adjustments based on feedback.

Time to Market

Longer time to market due to

the sequential development

and testing processes.

Faster time to market with incremental

releases after each sprint, delivering

usable software regularly.

Customer

Involvement

Limited customer

involvement: feedback is

gathered only after the testing

phase.

Continuous customer collaboration

through sprint reviews, ensuring the

product aligns with customer needs.

Change

Management

Difficult to manage changes;

changes often incur delays and

extra costs.

Highly adaptable to changes; requirements

can be adjusted after each sprint based on

feedback.

Quality Assurance

QA is conducted primarily in

isolation during the testing

phase after development.

QA is integrated throughout the

development process, ensuring ongoing

quality through continuous validation and

testing.

Team

Collaboration

Limited collaboration between

developers and testers until the

testing phase.

High collaboration between cross-

functional teams, with developers, testers,

and product owners working together in

real-time.

Scalability

Challenging to scale for larger,

more complex projects due to

sequential nature and long

feedback loops.

More scalable as Agile’ s iterative nature

allows teams to adapt and scale processes,

often using frameworks like SAFe or

LeSS.

Resource

Allocation

Resources are typically

allocated according to each

phase (e.g., testers only in the

testing phase).

Resource allocation is dynamic, with

testers, developers, and product owners

working collaboratively throughout each

sprint.

Maintenance and

Bug Fixing

Maintenance often becomes

cumbersome post-release,

requiring significant rework in

later phases.

Maintenance is streamlined as defects and

bugs are continually identified and

resolved during development cycles,

reducing post-release issues.

Project Visibility
Low visibility during the

testing phase as feedback is

High project visibility throughout the

process, with stakeholders regularly

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

IJIRCT2412012 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 11

delayed until the final phase. reviewing working software increments.

Long-Term

Development

May face delays if issues or

defects accumulate late in the

project, affecting long-term

development.

Agile’ s continuous iteration and

integration help resolve issues quickly,

ensuring smoother long-term

development.

Conclusion

In summary, both the Waterfall and Agile methodologies offer distinct paradigms for software testing, each

catering to different project dynamics and organizational needs. The Waterfall model, characterized by its

rigid, linear approach, excels in environments with well-defined, stable requirements and minimal scope for

change. However, its sequential structure and delayed feedback cycles often lead to late-stage defect

identification and a slower adaptation to evolving requirements, which can hinder timely delivery and

project flexibility.

Conversely, the Agile methodology champions an iterative, adaptive framework, promoting continuous

testing and real-time integration of feedback. Agile’ s emphasis on collaboration, rapid prototyping, and

iterative development allows for early defect detection and swift resolution, making it an ideal choice for

fast-paced, ever-changing software ecosystems. Its capacity for accommodating evolving requirements and

delivering incremental value positions it as the preferred approach in dynamic development environments

where speed, adaptability, and customer alignment are critical.

Ultimately, the decision between Waterfall and Agile hinges on project-specific requirements, stakeholder

expectations, and the level of flexibility needed. While Waterfall retains its utility in projects with fixed,

non-negotiable requirements, Agile has firmly established itself as the go-to methodology for modern

software development, offering superior adaptability, faster time-to-market, and more proactive quality

assurance practices.

References:

[1] S. Balaji, “Waterfall vs V-Model vs Agile: A comparative study on SDLC,”. Vol., no. 1, p. 5, 2012.

[2] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan, “Software Development Life Cycle Agile vs

Traditional Approaches,” p. 6

[3] S. Stolberg, “Enabling Agile Testing through Continuous Integration,” in 2009 Agile Conference,

Chicago, USA, Aug. 2009, pp. 369–374. doi: 10.1109/AGILE.2009.16.

[4] W. Van Casteren, The Waterfall Model and the Agile Methodologies: A comparison by project

characteristics. 2017. doi: 10.13140/RG.2.2.36825.72805.

[5] J. R. Penmetsa, “Agile Testing,” in Trends in Software Testing, H. Mohanty, J. R. Mohanty, and A.

Balakrishnan, Eds. Singapore: Springer, 2017, pp. 19–33. doi: 10.1007/978-981-10-1415-4_2.

Volume 5 Issue 5 @ 2019 IJIRCT | ISSN: 2454-5988

[6] C. J. Gil Arrieta, J. L. Díaz Martínez, M. Orozco Bohórquez, A. K. De La Hoz Manotas, E. M. De La

Hoz Correa, and R. C. Morales Ortega, “Agile testing practices in software quality: State of the art review,”

Oct. 2016.

