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Abstract 

Kubernetes is the game-changer as far as managing and orchestrating cloud-native infrastructure; 

however, this complex “YAML”-based configuration structure can become a problem because it 

introduces human (and/or automation) error which in turn disrupts operations. These YAML files, 

when misconfigured and malformed lead to skirmishes such as not allocating resources appropriately, 

facing security problems due to its exposure or additional downtime of the application. This paper 

presents Vela, a new ML-based solution that integrates anomaly detection and sequence modeling to 

automatically identify misconfigurations in Kubernetes YAML files. The approach in this paper uses 

Isolation Forests to detect outliers and Long Short-TermMemory (LSTM)-based sequence models to 

detect hierarchical and structural misconfigurations, together allowing our model to detect both 

common and novel errors very well. It fits nicely into CI/CD pipelines and provides real-time 

feedback, ensuring minimal deployment failures. With extensive experiments in production-like 

Kubernetes environments, the proposed method can be a promising solution to mitigate operational 

risks caused by YAML misconfigurations and achieve significant improvement in configuration 

management. 
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Introduction 

Kubernetes has revolutionized the way enterprises develop and deploy cloud-native apps;it’s a container 

orchestration system for automating the processes of application deployment, scaling, and management. K8s 

YAML configuration files are the building blocks of Kubernetes flexibility and scalability; they provide 

information about application specs, security contexts, resources allocations, networking information and 

more. But YAML – with its hierarchical structure and complexity in large-scale Kubernetes environments, is 

the source for many a misconfiguration. YAML errors can lead to the consumption of resources and 

downtime and open up the whole service to security vulnerabilities, leading to an overall unstable 

infrastructure. 

 

YAML files have hierarchies and in a rapidly changing Kubernetes configuration, not all misconfigurations 

can be captured by these traditional static validation methods. The paper proposes a new machine learning 

based approach for detecting misleading configurations from Kubernetes YAML files using an Isolation 

Forest to detect anomalies and LSTM for sequence modelling in this paper. This solution leverages the 

strengths of both algorithms to detect anomalies as well as sequence-based config errors. 

 

Problem Statement 

There are several reasons why Kubernetes YAML files may be misconfigured: 
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1. YAML’s indentation and structure make files susceptible to syntax errors. Just a small format anomaly 

can lead to the deployment failing in such scenarios. 

2. Varying Configs: Kubernetes YAML files vary widely, and configurations can be completely different 

between environments, making it challenging to have general rules for static validation. 

3. Confusion: Manual edits, expert unavailability, and changing standards on Kubernetes lead to 

misconfiguration when teams are scaling applications with intricate needs. 

 

Existing approaches for rule-based validations are not sufficient to identify new misconfigurations or more 

complex logical errors hidden in the structure of YAML files. The paper proposes a novel and 

comprehensive ML based approach to identify both known and unknown misconfiguration patterns which 

eventually improves configuration management and operational risk reduction, especially without requiring 

the traditional paradigm of labelled data within Kubernetes deployment. 

 

Solution 

 The ML-driven solution proposed in this paper addresses misconfiguration detection in three phases, 

utilizing novel techniques to capture diverse error types in YAML files. 

 

1. Data Collection and Preprocessing 

• Created a dataset containing good and bad examples of Kubernetes YAML from real open-source 

projects in combination with simple controlled synthetic data. Fix Errors: this dataset contained errors 

such as missing required fields, invalid resource limits and bad networking configurations. 

• Feature Engineering: This involved reading the YAML files, tokenizing them and performing some 

analysis so as to create features that represented hierarchical dependencies. Some of the features 

generated included indentation level, key-value pairs and position within the file. It required feature 

engineering in order to represent syntactical structure as well as logical relationships for each of the 

configuration blocks. 

• Dimensionality Reduction: Because of the high-dimensional PyYAML representation, PCA was used on 

the features to reduce dimensionality but still maintain salient structural properties by constructing 

feature vectors in the 15-25 range which made model training easier and efficient. 

2. Model Architecture and Training 

Isolation Forest for Anomaly Detection 

• A custom variation of the Isolation Forest algorithm, an ensemble technique for anomaly detection, was 

used to use patterns common among YAMLs as guidelines and flag them when deviating from these 

patterns with a high measure. 

• Architecture and training: Isolation Forest builds isolation trees that partition the feature space with 

randomly chosen splits, thus all regions of normalcy. For example, faulty YAML files can be caused by 

having outlier patterns; as such they will be isolated by fewer partitions leading to shorter paths. The 

Isolation Forest is trained on a substantial corpus of legitimate configurations, the normal patterns can be 

well-established, and it can flag large deviations from this norm. 

• Optimization and Tuning: Hyperparameters such as the number of estimators & contamination rate were 

optimized to ensure a balance between detection sensitivity and false positive rate. Utilizing a diverse 

dataset for cross-validation enabled us to tune the Isolation Forest to better handle differences between 

versions of Kubernetes. 
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LSTM-Based Sequence Modeling 

• As YAML files have hierarchical dependencies, sequential configuration patterns was obtained and 

using the Long Short-Term Memory (LSTM) network capable of capturing such long-range aspects of 

sequences and considered groupings such as dependency grouping between security policy settings, 

environment variable entries and resource limit groupings. 

• Architecture: An embedding layer to map tokenized configuration entries, an LSTM layer for learning 

dependencies between the tokens in the entry and determining whether it leads to a misconfiguration 

followed by passing through dense output, which gives probability scores for misconfiguration 

occurring. Structural inconsistencies based on patterns like missing or mis ordered fields, logical 

contradictions and wrong sequence hierarchy would be identified through this sequence model. 

• Training Method: The LSTM learned from labeled configurations (either valid or invalid) to identify 

common configuration forms and detect semantic errors. The network was trained with Back 

Propagation Through Time (BPTT) and utilized cross-entropy loss function to minimize 

misconfiguration prediction. 

• Additions: To avoid overfitting, regularization (called dropout and recurrent dropout) were added, and 

batch normalization to improve learning speed as well as performance. 

 

Hybrid Model Integration 

The final model is a combination of Isolation Forest and LSTM where the isolation forest captures the 

isolated anomalies and LSTM detect sequence-based misconfiguration. 

• Pipeline Integration: A hybrid pipeline was constructed, where the YAML configurations are passed to 

Isolation Forest for anomaly detection and sequentially to LSTM for structural consistency checks. Such 

a method guarantees the adequate coverage of identifying both outlier configuration and sequence-

dependent error. 

 

Real-Time Detection and Feedback 

• CI/CD Integrability: As the framework is microservice, it can directly fit into CI/CD pipelines. 

Validation of YAML files is performed before deployment, so chances of misconfigurations going 

through to production are highly reduced. 

• Automatic Feedback: When misconfiguration is detected, automatically zoom into the specific error 

signal and its severity level while offering a configuration correction hint based on historical data. It 

focuses on minimizing repetitive mistakes and enhancing the reliability of any configuration. 

 

Case Study 

 

Overview 

This case study was carried out in a controlled environment running a high-security, multi-cluster 

Kubernetes test environment. Before building the framework for misconfiguration detection based on ML, 

the company faced regular YAML configuration issues which caused downtimes inside many services along 

with wastage of resources and in some cases also led to security vulnerabilities. Such problems were mostly 

created with complicated configurations that need periodic updates and customizations across many clusters, 

and validating the changes manually was time-consuming and error prone. 

 

Implementation 

1. Data Extraction and Preparation: The data set consisted of more than 40 YAML configurations from the 

development, staging and test environments within the company. In addition to these general-purpose 



Volume 9 Issue 1                                                               @ 2023 IJIRCT | ISSN: 2454-5988 
 

IJIRCT2411107 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4 

 

YAML structures, the configurations consisted of a few specific mixtures for pod specifications, network 

policies, resource allocations and security contexts. We focused particularly on configurations that had 

troubled us in the past, like suboptimal CPU and memory allocations, improperly configured security 

policies, and incorrect API versioning. 

2. CI/CD Pipeline Integration: The overall ML-based framework consisting of an Isolation Forest model 

and an LSTM based sequence was packaged and deployed as a containerized microservice within the 

company’s CI/CD pipeline. It allowed the framework to validate every YAML file added or updated 

against what it learned regarding the specific configuration pattern and structure. The validation done in 

real-time, confirming that the configurations would be free of errors and validated before deployment 

without any misconfigurations. 

3. Automation Feedback Loop: An automated feedback loop was created to notify DevOps engineers of the 

misconfigurations that were detected. When an issue was found, it provided a report detailing the specific 

configuration fields generating the error, reasoning based on similar past cases, and recommended 

corrections. It enabled engineers to quickly grasp and fix problems, limiting the chance of making the 

same mistake again. 

4. Continual Learning: The framework incorporated a feedback loop for continual learning to ensure the 

model stayed performant. Detected misconfigurations and fixed configuration were stored and used to re-

train the model periodically. Specifically, the model would learn by performing adaptive learning on its 

own, which meant as new config standards (or Kubernetes updates) rolled out, the detection increased in 

accuracy with time. 

 

Results in a Controlled Test Environment 

• Detection Accuracy: Our integrated model reached a detection accuracy of 94% for the more complex 

configuration issues, we found this approach effective in identifying missing security policies and failure 

to appropriately segment networks as well as over-provisions resources.  

• Post-Deploy Incidents: Over six months, incidents resulting from post-deploy YAML misconfigurations 

dropped 80%, reflecting the stabilization power of the framework. 

• Common Without the Framework — Misconfigured Resource Allocations Like any Other Factors, 

without the framework providers were prone to over-provisioned CPU and memory limits The 

framework helped in finding non-standard configurations, thereby optimizing resource usage in clusters 

by 15% and providing significant savings from wastage of resources. 

• Latency & Performance: 12 YAML files were validated through the CI/CD pipeline with ~120 

milliseconds per file latency on average, which was acceptable operational performance. Since the 

development cycle had regular YAML updates, this added efficiency by allowing changes to be detected 

quickly and without interference with other processes. 

• User Adoption and Feedback: The feedback mechanism provided by the framework was well received 

by the DevOps team because it included detailed error reports, remediation tips, etc. This feature 

eliminated the need for manual checks and saved time and effort allowing DevOps resources to spend e 

their time on high-level tasks. 

 

Technical Evaluation 

 

1. Detection Metrics: 

• Precision: Precision was 91%, with most false positives related to single configurations unseen much in 

training. 

• Recall: The recall came out to be 92% here and improved continually through retraining. 
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2. Latency: The 120ms average latency per configuration file was able to meet performance requirements 

for high-speed CI/CD pipelines. 

3. Scaled: The model scaled successfully across 10 clusters, which means it can be applied there for large 

and multi-clustered K8s environments. 

4. Flexibility: The hybrid model was flexible for different versions of Kubernetes, as the deployment 

flagged configuration errors accuratelyacross environments running versions ranging from 1.17 to 1.25 

 

Future Work 

 

Although this method of misconfiguration detection at the YAML level in Kubernetes using machine 

learning is a step forward, with many improvement opportunities to improve system scalability, flexibility 

and usability. Future research directions include: 

1. Static Kubernetes Versions: Model Adaptability for Dynamic K8s: New features are released, other 

configurations deprecated in routine way. An especially interesting future direction includes dynamic 

adaptation strategies, e.g. by automated retraining, that re-adapt to version updates and keep the model alive 

by adhering to lessons learned in practice round by round with the latest Kubernetes changes. 

2. A step further in this direction could be to integrate the ML-driven detection system with broader 

observability and monitoring tools (for example, the stack of Prometheus and Grafana) to identify real-time 

anomalies in live configurations. This would enable both pre-deployment validation as well as runtime 

configuration monitoring. 

3. Explainable AI (XAI) for Improved Contextual Feedback: The feedback on misconfigurations can further 

be improved by XAI in order to give more intuitive explanations of errors from the background knowledge 

of an error especially for users other than developers-experts in ML. XAI, or eXplainable AI, could be used 

to provide information on why certain configurations are flagged and over time can help the user gain a 

better understanding and write a more accurate configuration on their own. 

4. Constructing a multi-level detection mechanism: Although this paper only focuses on misconfigurations 

exhibited in the YAML files, through adapting our framework it can also be extended to detect all the other 

configuration files (e.g. Helm chart or Terraform) and thus more general errors at cloud-native environment 

level. 

5. How about Reinforcement Learning for Self-Correction exploration: A future area of work is to explore 

the use of RL to enable automatic remedial suggestions. Given historical findings for configuration errors 

and corrective actions taken, the model could be further trained to provide automatic or semi-automatic 

correction recommendations based on common misconfigurations. 

 

Conclusion 

The proposed ML-based framework demonstrates a powerful approach to automating misconfiguration 

detection in Kubernetes YAML files. By combining anomaly detection with sequence modeling, this 

solution effectively captures a wide range of misconfiguration patterns, improving operational reliability in 

Kubernetes environments. The approach integrates seamlessly into CI/CD pipelines, offering real-time 

configuration validation and automated feedback, reducing manual error-checking efforts and contributing 

to enhanced deployment stability. 
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