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Abstract 

The purpose of this paper is to discuss advanced approaches to sensor fusion, such as EKF SLAM, 

Graph-based SLAM, and virtual-inertial SLAM (VISLAM), with methods to improve the quality of a 

sensor such as Loop Closure Detection and Dynamic Weighting. It also incorporates necessary 

measures to enhance the performance of SLAM. The paper established that navigation in an 

unknown environment is a critical feature for autonomous systems, and it relies on accurate 

localization and mapping with no prior information. The report further affirmed that multi-sensor 

fusion methods coordinate information acquired from different sensors like LiDAR, cameras, and 

IMU to improve localization quality and avoid dependence on a solitary sensor. These findings 

contribute to the development of more realistic and scalable SLAM systems to model and navigate 

through challenging and dynamic environments. As technologies continue to evolve, there is a 

possibility for the emergence of advanced systems in robotics, self-driving cars, and similar 

technologies further to improve the performance of SLAM systems in unknown environments. 
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1. Introduction 

Simultaneous Localization and Mapping (SLAM) plays a significant role in robotics and autonomous 

systems. The technique is vital when creating a map and, at the same time, determining the position of the 

system in that map. Environmental conditions such as data noise, sensor drift, and environmental variability 

are some challenges that SLAM experiences, especially if there are no prior maps and stationary landmarks 

for reference[2]. The above challenges are solved by sensor fusion techniques combining data from different 

sensors and types, strengthening each other in localization and mapping processes. This paper aims to 

discuss techniques in sensor fusion towards SLAM in unknown environments, ways to improve localization 

accuracy, and steps to increase the success rate in SLAM. 

2. Different sensor fusion techniques for SLAM in unknown environments 

SLAM integrates sensor data from multiple complementary sensors to overcome the drawbacks of 

individual sensors and achieve reliable performance in unknown environments. Extended Kalman Filter 

(EKF) SLAM is one of the most common approaches based on the Kalman Filter algorithm, and it enables 

the robot to build a map of the environment while estimating its position [1]. EKF SLAM is particularly 

effective for systems with Gaussian noise and is commonly used to fuse LiDAR and IMU data[1]. 

Nonetheless, its computational requirements grow with map size, which may render it inefficient in large 

terrains.  
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Fig. 1: EKF-SLAM with Machine Learning 

Another approach is the Graph-Based SLAM, where the environment is modeled as the graph. The nodes 

are the robot poses, and landmarks and the edges contain the sensor measurements. It is most proficient in 

dealing with sizeable scenarios and maintaining map coherency, especially regarding loop closure 

detection[3].  

 

Fig. 2: Particle Filter SLAM 

Particle Filter SLAM, also known as FastSLAM, is another effective technique. Particle Filter SLAM has 

relatively high performance in dealing with non-Gaussian noise. It generates multiple hypotheses regarding 

the position of a robot while building a map. However, it is computationally expensive when using a large 

number of particles. 

 

Fig. 3: Visual-Inertial alignment 
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Moreover, Visual-Inertial Simultaneous Localization and Mapping (VINS) is also a vital technique, where 

localization is done via vision and inertial measurements with the help of cameras and IMUs, respectively. 

Specifically, cameras offer detailed visual feedback, whereas IMUs give motion data, making it adequate for 

feature-rich settings[2]. However, the effectiveness of this technique decreases in case of low lighting or the 

absence of textures. It also requires a significant amount of computational resources. LiDAR-Camera Fusion 

SLAM incorporates LiDAR for depth perception and a camera for spatial context information[3]. This 

integration improves accuracy using the two modalities, especially when objects or scenes are crowded or in 

motion. Despite its efficiency, LiDAR-Camera Fusion can also be expensive and challenging to deploy, 

making it ideal for applications like self-driving cars and drones. 

 

Fig. 4: Fusing LiDARs 

3. Techniques for Enhancing Sensor/Localization Accuracy 

Some significant methods for enhancing sensor and localization accuracy in SLAM include sensor 

calibration. Sensor calibration is a foundational process, and it is aimed at ensuring that sensors are giving 

accurate and synchronized information. There are various types of calibration methods, such as intra-sensor 

calibration, which determines the inherent properties of the individual sensors, and inter-sensor calibration 

methods, which determine the orientation of the sensors concerning each other[6]. Signal conditioning like 

noise reduction, outlier elimination, and down-sampling enhances the sensor data quality before integration. 

Besides, dynamic sensor weighting gives priority to the data coming from individual sensors based on the 

credibility of the data, making the system more resilient. Another essential approach is called ’loop closure 

detection,’ which aims to correct the accumulated drift and recalculate the map and its position by 

identifying previously traversed areas [4]. 

Additional techniques, such as state estimation methods like UKF and particle filters, enhance localization 

by dealing with nonlinearity and non-Gaussian noise. Semantic information integration provides a further 

layer of increased accuracy, where visual data is used to locate and utilize significant aspects of the 

environment like objects or landmarks[4]. There is also a need for timely data acquisition, which implies 

that the data captured by the sensors should be synchronized in real time with well-coordinated time-

stamping and alignment. These techniques ease inherent shortcomings from individual sensors and the 

influence of unknown environments, enhancing localization accuracy and mapping details. 

4. Steps to be taken in SLAM that would give better results 

Without proper guidance, obtaining the best SLAM performance in unknown environments can be 

challenging. Therefore, the initial action should involve identifying and installing the various sensors, which 

include depth sensing (LiDAR) and motion tracking (IMU), in addition to camera visual recognition[3]. 

Correct placement of the sensors reduces zones that are not monitored too much while increasing the 

coverage. Data preprocessing is crucial for sensor data. Some standard methods include noise reduction and 
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featureization, which assist in improving the quality of input information and lessening computational loads 

[5]. Feature matching algorithms like ORB and SIFT are also employed for reliable data association, 

positively impacting the sensor correlation and environmental features. 

Another important consideration is the efficient representation of maps, where valuable data structures 

include occupancy grids and octrees to represent collaborative environmental information in a lightweight 

and scalable form. Other adaptive algorithms for sensor fusion can alter the sensors’ weight in a given 

environment to attend to more credible data while limiting other unreliable and less relevant sources. Loop 

closure detection remains one of the primary ways of addressing the drift problem, with methods such as 

GraphSLAM being applied to refine the map [4]. Adapting machine learning algorithms into the SLAM 

systems can improve their performance by training them on motion profiles, recognizing abnormalities, and 

updating sensor reliability in real time. 

Other techniques, including real-time methods like incremental smoothing and mapping (iSAM), are crucial 

since they enable SLAM systems to process data quickly, especially in complex environments. 

Comprehensive validation and testing in various structured and unstructured environments, including indoor 

and outdoor cases, are crucial to reveal and address the system vulnerabilities and improve performance[7]. 

Collectively, these steps lay down a foundation that enhances the reliability, scalability, and accuracy of 

SLAM in unknown terrains. 

5. Conclusion 

Navigating unknown environments using techniques like SLAM is challenging and complex. It encounters 

challenges like data noise, sensor drift, and environmental variation. As evidenced by EKF SLAM, graph-

based SLAM, and visual-inertial SLAM, integrating different types of sensors can provide more accurate 

localization and mapping results. Higher accuracy depends on more complex techniques like sensor 

calibration, changing the weights dynamically, loop closure, and highly accurate state estimation models. In 

order to attain improved SLAM results, specific critical rules need to be followed, including selecting 

appropriate sensors, efficient data preprocessing, proper fusion techniques, and real-time optimization. With 

new sensor technologies and improved fusion algorithms, SLAM systems will be better equipped to localize 

and create accurate representations of unknown environments. 
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