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Abstract 

This research seeks to enhance water quality assessment by utilizing machine learning, particularly 

the Gradient Boosting Regressor, to improve both user categorization and predictions of water 

potability. The primary objectives include implementing the Gradient Boosting Regressor, assessing 

its performance, using preprocessing techniques such as standard scaling and KNN imputation, and 

optimizing the algorithm via hyperparameter tuning. The methodology starts with comprehensive 

data collection, exploration, and refinement through feature engineering and selection. Several 

machine learning models, including ensemble techniques, are trained and rigorously evaluated to 

identify the most suitable approach. Using Python libraries like Pandas and NumPy, the dataset is 

meticulously cleaned, addressing missing values and outliers to maintain data integrity. Descriptive 

analytics, correlation heatmaps, and regression plots are employed to uncover data patterns and 

relationships. In the model development phase, Logistic Regression and Gradient Boosting Regressor 

are trained, with hyperparameter tuning conducted through GridSearchCV, while performance 

metrics such as R² score and mean squared error inform the final model selection. The anticipated 

result is a reliable predictive framework capable of outperforming traditional Water Quality Index 

(WQI) models in accurately classifying water potability. By integrating feature scaling, KNN 

imputation, and addressing class imbalance through resampling, the model’s robustness and fairness 

are enhanced. Ultimately, this research emphasizes the transformative role machine learning can play 

in water quality management, delivering actionable insights that aid policymakers and stakeholders 

in ensuring access to safe drinking water through a scalable, data-driven solution. 
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I. INTRODUCTION 

This proposal addresses the growing need for accurate water quality assessment by comparing traditional 

Water Quality Index (WQI) methods with modern machine learning techniques. Since the 1960s, WQI has 

been a widely used approach for evaluating water quality, but its limitations, such as dependence on site-

specific guidelines and the challenge of distilling complex datasets into a single index, have raised concerns 

[1], [2]. Machine learning offers a powerful alternative due to its ability to analyze vast amounts of data, 

detect intricate patterns, and provide highly accurate predictions. With over 1.1 billion people currently 

lacking access to safe drinking water, and projections indicating widespread water stress by 2025 [3], it is 

crucial to develop advanced tools for water quality assessment. 
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Human activities, climate variations, and natural processes constantly impact water bodies, making it 

difficult to maintain water quality [4]. Traditionally, WQI has provided a numerical representation of water 

health, but recent advancements in data science present an opportunity to improve upon this method. This 

research leverages a dataset of 3,276 water bodies to explore how machine learning algorithms, including 

Gradient Boosting, Decision Trees, and Random Forest, can predict water potability. The research also 

tackles challenges like missing data, class imbalances, and feature scaling [5]. By comparing WQI with 

machine learning models, this study aims to reveal the strengths and weaknesses of both approaches, 

contributing to more effective water quality management strategies. 

 

II. LITERATURE REVIEW 

Water quality indices (WQI) have undergone significant evolution since their inception, reflecting 

advancements in environmental science and resource management. The earliest efforts, dating back to the 

1960s, introduced rating systems based on key variables, laying the foundation for future improvements in 

water quality assessment methodologies [6], [7]. Over time, more sophisticated indices emerged, 

incorporating a broader range of variables, including biological, chemical, and toxicological factors [8]. 

This evolution was further supported by the adoption of water quality indices across various global regions, 

ensuring their relevance to local environmental contexts [9]. 

Modern innovations have led to the refinement of these indices, with contemporary methods 

incorporating additional parameters like pesticide contamination, addressing concerns over human influence 

on water resources [10]. Recent developments in data monitoring have further enhanced water quality 

assessments, allowing for more comprehensive evaluations through advanced monitoring systems [11]. 

Despite these advances, the traditional WQI methods are not without limitations. They often depend on 

arithmetic weighting and percentage-based systems, which may fail to capture the full complexity of water 

bodies [12]. 

The rise of machine learning has introduced a new paradigm for water quality prediction and analysis. 

Models like Random Forest and Gradient Boosting have shown high accuracy in predicting key water 

quality indicators such as dissolved oxygen and turbidity [13], [14]. These models excel at understanding 

the influence of factors such as land cover, urbanization, and hydro-meteorological conditions on water 

quality [15]. They also offer improved solutions for handling incomplete datasets and overcoming the 

subjectivity inherent in traditional methods [16]. Despite challenges such as limited sample sizes and the 

need for large datasets, machine learning models have significantly enhanced prediction accuracy and 

objectivity [17]. 

Furthermore, modern research emphasizes optimizing model parameters through techniques like grid 

search to improve machine learning models' performance [18]. However, there remains room for 

improvement in water quality management strategies, particularly in expanding the geographic scope of 

assessments and incorporating additional indicators to enhance temporal data resolution [19]. 

 

III. RESEARCH METHODOLOGY 

Exploring the links between water quality measures and the Water Quality Index (WQI) is the purpose of 

this study, which makes use of a method based on statistics. The process consists of loading the dataset by 

using the panda library, which is then followed by data cleaning in order to deal with missing values and 

outperforming values. Summary information on the central tendency, dispersion, and distribution shape may 

be obtained by statistical analyses. The degree and direction of correlations between water quality measures 

and WQI may be determined by statistical analysis utilizing the Pearson correlation coefficient. The 

Ordinary Least Squares (OLS) regression method is used to quantify the influence that factors like salinity, 

dissolved oxygen, and pH have on water quality index (WQI). The purpose of hypothesis testing is to 



Volume 10 Issue 6                                                          @ 2024 IJIRCT | ISSN: 2454-5988 

 

2411096 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3 

 

discover whether or not the means of the variables substantially differ from zero by using one-sample t-

tests. A correlation matrix heatmap is one of the visualization methods that may be used to represent 

correlation coefficients. Other techniques include regression plots, which are used to explain relationships, 

and trend analysis line plots, which are used to depict changes in water quality over the years. 

 

A. Holistic Water Quality Evaluation Using Multi-Parameter Analysis 

The dataset consists of 2371 observations encompassing key water quality variables collected over several 

years, providing a detailed analysis of water conditions across multiple sites. The variables include salinity 

(ppt), dissolved oxygen (mg/L), pH, Secchi depth (m), water depth (m), water temperature (°C), air 

temperature in both Celsius and Fahrenheit, and the year of measurement. Salinity reflects the concentration 

of dissolved salts, influencing water density and marine life, while dissolved oxygen is vital for aquatic 

organisms, with low levels indicating poor water conditions. The pH value affects chemical and biological 

activities, with most aquatic life thriving in a range of 6.5 to 8.5. Secchi depth, which measures water 

clarity, is determined by suspended particles and algae, and water depth gives context for other metrics, 

supporting habitat analysis. Water temperature plays a crucial role in biological processes, impacting 

species' metabolic rates and distribution. An unweighted Water Quality Index (WQI), summing key 

variables such as salinity, dissolved oxygen, pH, Secchi depth, water depth, and temperature, offers a quick 

overview of water health. Temporal and spatial analysis, based on monthly and yearly data, uncovers 

seasonal changes and spatial patterns, while descriptive statistics like mean and standard deviation reveal 

central tendencies and variability. Correlation analysis can highlight relationships, such as between salinity 

and dissolved oxygen, or pH and temperature. Through benchmarking, historical data can be used to track 

ongoing water quality, and hypothesis testing can assess the impact of seasonal changes and parameter 

relationships. T-tests can compare averages across seasons or locations, and regression analysis can predict 

water quality outcomes, identifying the main factors influencing overall conditions. This multifaceted 

approach ensures a thorough understanding of water quality dynamics, offering insights for effective 

management and improvement of aquatic ecosystems. 

 

B. Dataset Statistics 

The dataset includes several water quality measurements, with summary statistics shedding light on the 

distributions of these variables. Salinity, recorded in parts per thousand (ppt), has an average of 0.717 with a 

standard deviation of 1.231, and values ranging from 0.000 to 9.000, indicating generally low salinity levels 

with occasional higher readings. Dissolved oxygen (mg/L) has a mean of 6.646 and a standard deviation of 

2.507, with values between 0.000 and 15.100, demonstrating diverse oxygen concentrations across the 

samples. The pH values, which range from 0.300 to 9.900, have an average of 7.168 and a standard 

deviation of 0.788, suggesting a predominantly neutral pH in the water samples, with some leaning toward 

acidity or alkalinity. Secchi Depth (m), representing water transparency, shows a mean of 0.525 and a 

standard deviation of 0.474, with readings between 0.000 and 9.000, indicating variations in water clarity. 

Water Depth (m) averages 0.763 with a standard deviation of 0.621, ranging from 0.010 to 12.000 meters, 

reflecting a broad range of sampling locations. Water temperature (°C) averages 18.062 with a standard 

deviation of 8.298, spanning from 0.000 to 74.000, while air temperature (Celsius) varies widely, with a 

mean of 16.438, a standard deviation of 11.754, and values from 0.000 to 74.000. Additionally, air 

temperature in Fahrenheit averages 62.052 with a standard deviation of 15.492, ranging from 10.500 to 

92.300. There is also a duplicate column for air temperature in Celsius, which has an average of 15.663 and 

a standard deviation of 10.315, with values from -17.778 to 33.500. The Year column, denoting the period 

of data collection, ranges from 1899 to 2019, with an average year of 2006. These summary statistics 
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provide an in-depth overview of the variability and central tendencies of the water quality measurements, 

showcasing the diverse environmental conditions captured in the dataset. 

 

C. Box Plot Visualisation Of Dataset 

 

Fig 1 Data Visualization Analysis: Boxplots of Key Water Quality Parameters 

The dataset's boxplots reveal key water quality insights: salinity shows a low median near 0 ppt with 

outliers exceeding 6 ppt, dissolved oxygen has a median of 6 mg/L with extreme values above 14 mg/L and 

below 1 mg/L, and pH is centred around 7 with outliers below 2 and above 9. Secchi depth has a median 

under 1 meter with outliers over 8 meters, while water depth has a median of 2 meters, with outliers up to 12 

meters. Water temperature has a median around 20°C, with outliers exceeding 50°C. The outliers suggest 

variability due to natural factors or potential measurement errors, warranting further investigation in some 

areas. 

 

D. Assessing Water Quality: Distribution Patterns And Environmental Impact 

 

Fig 2  Distribution of Water Quality Parameters 

The analysis of water quality parameters reveals key insights into the characteristics of various water 

bodies. Salinity is highly skewed toward low values, indicating predominantly freshwater samples with 

occasional saline inputs. Dissolved oxygen shows a near-normal distribution around 6 mg/L, suggesting 
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healthy aeration for aquatic life, while pH levels are mostly neutral to slightly alkaline, though occasionally 

lower. Secchi depth and water depth are both right-skewed, reflecting generally low water clarity and 

shallow water bodies. Water temperature exhibits a bimodal distribution with peaks around 20°C and 30°C, 

indicating seasonal and geographic variation, with occasional higher temperatures likely linked to thermal 

pollution. The skewed distributions highlight typical conditions alongside occasional extreme values, 

suggesting areas for further investigation to address potential water quality concerns. 

 

E. Water Quality Index: Trends And Observations 

 

Fig 3 Water Quality Index (WQI) Trend Analysis 

The analysis of the Water Quality Index (WQI) over time reveals important trends in water quality, 

showing that lower depths (0-2 meters) are associated with higher WQI and lower salinity levels (0-4 ppt), 

indicating better water quality in shallow waters. A few outliers at greater depths (above 8 meters) show low 

salinity (below 2 ppt). Seaborn jointplot analysis highlights a trend of decreasing WQI with increasing 

depth, while higher WQI values cluster in shallower waters. Numerical data confirms that most observations 

fall within 0-2 meters depth and 0-4 ppt salinity, with WQI values ranging from 30 to 90. Overall, the data 

suggests an inverse relationship between water depth and salinity, with better water quality in shallower, 

low-salinity areas, emphasizing the interplay between these factors in water quality assessments. 

 

F. Dissolved Oxygen Levels in Water: An Analytical Overview 

 
Fig 4 Dissolved Oxygen (mg/L) by State and Year 

The graph "Dissolved Oxygen (mg/L) by State and Year" reveals a long-term decline in dissolved oxygen 

levels from 1989 to 2019, with darker colors in the early years (1989-1994) indicating higher levels and 

lighter colors from 2000 onwards showing lower levels.  



Volume 10 Issue 6                                                          @ 2024 IJIRCT | ISSN: 2454-5988 

 

2411096 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6 

 

Seasonal trends are evident, with June and July consistently displaying lower dissolved oxygen due to 

reduced solubility during warmer months. Notable fluctuations occur between 1995 and 1997, while the 

period from 2000 to 2019 shows a more consistent decline. Data gaps in the mid-1990s and early 2000s 

must be considered when interpreting these trends. Overall, the decline in dissolved oxygen suggests 

worsening water quality, potentially linked to increased pollution, rising water temperatures, or other 

environmental factors. Further investigation is needed to correlate these changes with environmental 

policies, industrial activities, or climate shifts to address the decline in water quality 

 

G. pH Levels in Water: A Detailed Analysis 

 

Fig 5 "pH (standard units) by State and Year" 

The graph "pH (standard units) by State and Year" shows a general decline in pH levels from 1989 to 

2019, with darker colors in the early years (1989-1994) indicating higher, more alkaline levels, and lighter 

colors from 2000 onwards reflecting a shift toward more acidic conditions. Seasonal trends reveal 

consistently lower pH levels in June and July, likely due to increased biological activity and higher 

temperatures during summer. Notable fluctuations between 1995 and 1997, followed by a more consistent 

decline from 2000 to 2019, highlight the trend toward acidity. Data gaps in the mid-1990s and early 2000s 

must be considered when interpreting these results. The long-term decline in pH may be linked to factors 

such as pollution, acid rain, and environmental changes. Further investigation is needed to correlate these 

pH trends with environmental policies, industrial activities, or climatic shifts to better understand and 

address the causes of increasing acidity. 

H. Water Temperature: Analysis and Observations 

 

Fig 6 Water Temperature by State and Year" 
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The heatmap titled "Water Temperature by State and Year" visualizes water temperature trends from the 

late 1980s to 2019, showing a shift from moderate temperatures in the early years (with green and blue 

shades) to a cooling trend in the mid to late 1990s (with darker blue). From 2010 onward, a gradual 

warming trend appears, indicated by more green and yellow shades, aligning with global warming patterns. 

Seasonal trends are evident, with winter months (December to February) displaying lower temperatures and 

summer months (June to August) showing higher temperatures. Transitional months exhibit moderate 

values, reflecting shifts between seasonal extremes. Data gaps and anomalies, particularly in 1996 and 1997, 

require further investigation to understand their causes. Yearly comparisons highlight temperature 

variability across states, necessitating a closer regional analysis to determine impacts on water quality. 

Water temperature affects various parameters, like dissolved oxygen, making it essential for Water Quality 

Index (WQI) calculations. The warming trend may affect water quality, emphasizing the need for proactive 

water management strategies to address potential impacts. 

 

I. Salinity: Analysis and Observations 

 

Fig 7 Analysis and Observations of Salinity by State and Year 

The heatmap of salinity levels (ppt) from 1989 to 2019 provides an overview of variations across states 

and months, with a color gradient ranging from light yellow (low salinity) to dark blue (high salinity). In the 

late 1980s and early 1990s, higher salinity levels dominate, but a decline occurs around 1994-1997, 

transitioning to lighter shades. From 2000 onward, salinity stabilizes at moderate levels, with a slight 

increase in the late 2010s. Winter months initially show higher salinity but trend lower in recent years, while 

summer months exhibit lower salinity, likely due to freshwater inputs or seasonal factors. Transitional 

months maintain moderate levels. Data gaps, particularly in 1996-1997, require further investigation. Yearly 

fluctuations highlight the need for a state-wise analysis to identify regional patterns and their water quality 

implications. Understanding salinity trends is crucial for Water Quality Index (WQI) calculations, as salinity 

impacts water potability and aquatic ecosystems. Further exploration of salinity's correlation with other 

water parameters will help inform effective water management strategies. 
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J. Water Quality: Insights from Correlation Matrix 

 

Fig 8 Correlation Matrix of Water Quality Parameters and Water Quality Index (WQI) 

The correlation matrix reveals key relationships between water quality parameters and the Water Quality 

Index (WQI). Salinity shows a moderate positive correlation with WQI (0.38), indicating that higher salinity 

is somewhat linked to better water quality. It also has weak positive correlations with dissolved oxygen 

(0.29) and pH (0.28), but weak negative correlations with Secchi depth (-0.15) and water depth (-0.082), 

suggesting that higher salinity is associated with lower clarity and shallower waters. Dissolved oxygen 

strongly correlates with WQI (0.9) and has a moderate negative correlation with water temperature (-0.36), 

indicating the effect of temperature on oxygen levels. pH correlates moderately with WQI (0.43), while 

Secchi depth and water depth show a strong positive relationship (0.82). A moderate negative correlation 

between year and WQI (-0.45) suggests a decline in water quality over time, calling for further investigation 

into environmental factors. The findings highlight the importance of dissolved oxygen and pH in 

maintaining water quality. 

 

IV.  MODEL BUILDING WITH GRADIENT BOOSTING TREE REGRESSION 

Gradient Boosting Trees Regression is an advanced ensemble learning technique that enhances predictive 

performance by building a model incrementally from multiple weak learners, typically decision trees. The 

process starts with an initial model, usually a simple prediction of the mean target value. Subsequently, 

residuals (errors) from this model are calculated, and a new decision tree is trained to predict these residuals. 

This new tree's predictions are then integrated into the existing model, weighted by a learning rate. This 

iterative process is repeated for a specified number of stages, each time refining the model to correct 

previous errors. The model is trained on the training data, and the best hyperparameters are identified. The 

final model is evaluated using Mean Squared Error (MSE) and R-squared (R²) metrics, achieving a MSE of 

1.857 and an R² score of 0.977, indicating excellent predictive performance.  
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A. Regression Analysis for Water Quality Index (WQI) 

In a regression analysis for WQI, key findings include statistically significant positive relationships of 

WQI with salinity (0.3892, p = 0.035), dissolved oxygen (0.8735, p < 0.001), and pH (0.4511, p = 0.012). 

Conversely, water temperature (-0.2543, p = 0.045) and the year (-0.4512, p = 0.004) showed significant 

negative impacts on WQI. Other factors like Secchi Depth and Water Depth had positive but not statistically 

significant coefficients, while months had a negligible impact. Model diagnostics indicated non-normally 

distributed residuals (Omnibus and Jarque-Bera tests, p = 0.000) and heavily tailed data distribution, as 

evidenced by high skew (-1.342) and kurtosis (8.431), which might influence the model's reliability despite 

a Durbin-Watson statistic of 1.986 suggesting no significant autocorrelation in the residuals. 

 

B. Superior Performance of Gradient Boosting Regression in Water Quality Analysis 

The Gradient Boosting Regression model demonstrated exceptional performance in predicting water 

quality indices, achieving the lowest Mean Squared Error (MSE) of 1.857 and the highest R² value of 0.977 

among the models evaluated. With optimized hyperparameters—learning rate of 0.2, maximum depth of 3, 

and 200 estimators—the model effectively captured the complex relationships between various water 

quality parameters. These results underscore the model's robustness and accuracy, making it a valuable tool 

for environmental monitoring and management by providing precise insights into the factors influencing 

water quality. 

 

C.  Coefficients and Significance 

The intercept of -8.2345 (p = 0.001) indicates the expected WQI when all predictors are zero, with its 

negative value possibly reflecting other influential factors not captured in the model. Among the predictors, 

salinity (0.3892, p = 0.035), dissolved oxygen (0.8735, p < 0.001), and pH (0.4511, p = 0.012) show 

statistically significant positive relationships with WQI. This highlights their importance in improving water 

quality. Conversely, water temperature (-0.2543, p = 0.045) has a significant negative impact, while year (-

0.4512, p = 0.004) also shows a significant negative trend over time. However, secchi depth (0.2375, p = 

0.062) and water depth (0.1578, p = 0.089) are not statistically significant at the 5% level, indicating less 

conclusive impacts on WQI. 

 

D.  Residuals Analysis 

The residuals analysis reveals some challenges with normality, as suggested by the Omnibus and Jarque-

Bera tests (p-values < 0.001). Despite this, the Durbin-Watson statistic of 1.986 indicates no significant 

autocorrelation, and there are no severe multicollinearity issues identified among the predictors. These 

findings imply that while the model performs well overall, some improvements could be made to address 

the normality of residuals. 

 

V. TRENDS IN WATER QUALITY OVER THE YEARS 

Analysing trends in water quality parameters over the years reveals several key insights. Salinity levels 

show moderate variability with low mean values, typical of freshwater conditions. Dissolved oxygen 

displays significant positive impacts on WQI, with average levels indicative of healthy aquatic 

environments. The pH levels exhibit slight alkalinity, favourable for aquatic life, with moderate variability. 

Secchi depth indicates moderate water clarity, important for understanding visibility and light penetration. 

Water depth shows high variability and relatively shallow averages, providing context for other 

measurements. Water temperature reflects significant seasonal variations, affecting the overall water quality. 
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VI. INSIGHTS AND IMPLICATIONS 

The strong positive correlation between dissolved oxygen and WQI underscores its crucial role in 

maintaining high water quality. Although salinity has a positive association with WQI, its impact is 

moderate. The negative effect of water temperature on WQI suggests that warmer waters may be less 

favorable for overall water quality. Additionally, the negative trend in WQI over the years points to a 

declining water quality, warranting further investigation and intervention. 

 

VII. CONCLUSIONS 

The analysis of water quality parameters reveals key findings with numerical support. Salinity has a 

median just above 0 ppt and an IQR of 0 to 1.2 ppt, with occasional outliers above 6 ppt, suggesting 

predominantly freshwater conditions with rare saline intrusions. Dissolved oxygen (DO) shows a median 

around 6 mg/L and an IQR of 4 to 8 mg/L, with some outliers exceeding 14 mg/L or dropping below 1 

mg/L, indicating generally healthy conditions but also areas with potentially harmful low oxygen levels. pH 

levels have a median of 7 and an IQR from 6.5 to 8, with extreme outliers below 2 and above 9, pointing to 

localized acidification or alkalization events. Secchi depth, representing water clarity, has a median just 

below 1 meter and an IQR of 0.5 to 1.5 meters, with outliers beyond 6 meters, suggesting variability in 

turbidity. Water depth and temperature mostly center around 2 meters and 20°C, with outliers indicating 

possible thermal pollution or geothermal activity. 
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