
Volume 5 Issue 3                                             @ 2019 IJIRCT | ISSN: 2454-5988 

IJIRCT2411070 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1 

 

Systimer: A Timer Tool for All Timer-Related 

Applications 
 

Omkar Wagle  
 

ov.wagle@gmail.com 

 

Abstract  

SysTimer is a memory-efficient tool for embedded systems that optimizes timer array initialization and 

management. It assigns unique IDs to timers, allowing developers to set expiration times and callback 

functions. By scanning the timer array and identifying the next timer to expire, SysTimer ensures the timely 

execution of tasks. The tool's flexible design includes features like time updates and timer cancellations, 

giving developers greater control over timer behavior. SysTimer's efficient memory usage and versatility 

make it a valuable asset for embedded systems that require precise timing and resource optimization. 

 

Keywords: Embedded systems, Timer management, callback function, memory optimization, Internet of 

Things, MQTT 

 

Introduction 

Embedded systems often operate with limited memory resources, necessitating efficient memory 

management techniques. This paper introduces SysTimer, a tool designed to optimize timer array 

initialization and management in such environments. By employing a timer ID system and a strategic 

memory allocation approach, SysTimer ensures that timer-related operations are executed efficiently while 

minimizing memory consumption. 

SysTimer provides a flexible framework for developers to create and manage timers, assigning unique IDs 

to each timer and allowing for customization of expiration times and callback functions. The tool's ability to 

efficiently scan the timer array and identify the next expiration time enables timely execution of associated 

tasks. Additionally, SysTimer offers features like time updates and timer cancellations, providing developers 

with greater control over timer behavior. 

This paper discusses various uses of SysTimer. It discusses how SysTimer helped us to redirect our entire 

processing into a worker thread and this eventually helped in improving the efficiency of our IoT 

infrastructure. 

 

Architecture 

Given that most embedded systems have very little memory to use, this tool makes sure to initialize the timer 

array in a multiple of 64. The number 64 was used just for design purposes, however, developers can use 

any multiples of 8 to initialize the timer array. A unique timer ID is assigned to every timer-related 

operation. 

 

mailto:ov.wagle@gmail.com


Volume 5 Issue 3                                             @ 2019 IJIRCT | ISSN: 2454-5988 

IJIRCT2411070 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2 

 

 
During the time of allocation, the developer should mention how many seconds they expect the timer to 

expire and also the callback function that would be triggered after the timer expires. Once the timer ID is 

assigned, the timer is added to the timer array and waits for the timer to expire. Multiple timer IDs with 

different expiration times and callbacks can be assigned in parallel. How does the SysTimer know which 

timer ID to look for and execute its callback function? SysTimer has a function that lets the application 

know which timer is near its expiration. It scans through the entire array and finds the smallest expiration 

time. With this time, the application using this tool can use the time to execute the next timer ID to expire. 

Once the timer ID is executed and its timer reaches 0, the tool relieves the timer ID for future use. The 

reason for this is as many embedded systems have memory constraints, reusing as much timer ID as possible 

before the array expands by 64 is a better way of saving memory. The callback parameter is kept as void * 

to typecast this parameter into any user-defined type. This design decision was made with the flexibility 

SysTimer can offer to other developers kept in mind. SysTimer also gives us the provision to update the 

time or cancel the timer ID. These features help us modify the time or deallocate the timer ID as per the 

application’s wish. 

 

Usage 

In today’s world, with the modernization of various processors with multiple cores, usage of multithreaded 



Volume 5 Issue 3                                             @ 2019 IJIRCT | ISSN: 2454-5988 

IJIRCT2411070 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3 

 

applications has become mandatory mostly for performance enhancements such as performing various 

operations parallelly with each thread responsible for a set of operations. I have designed an Internet of 

Things(IoT)[1] application on an ARM9 processor with a single core. Internet of Things is a group of smart 

devices that collect data and send all that data over the internet to a central hub, it can be a server or a 

gateway. The IoT application usually receives a command through a remote app, either a mobile app or a 

website. The command is redirected to the central hub via the internet. The response is received through an 

HTTP response and is transmitted to a protocol-specific application. This interprocess communication is 

done through the MQTT[2] protocol. 

MQTT stands for Message Queuing Telemetry Transport. MQTT protocol is mostly used for IoT-based 

interprocess communication. MQTT uses a publish/subscribe model to communicate. The application using 

MQTT subscribes to a set of topics from where they would want to receive messages. The subscription is 

registered on the MQTT bus. Once an application publishes a message on any topic, the MQTT bus looks 

up for which application that message belongs, the MQTT bus then invokes the callback registered to 

handle all the incoming MQTT messages. 

As most of the IoT ecosystems developed today are completely multi-threaded, SysTimer plays an 

important role in providing callback functionalities with a dedicated timer. When an application receives 

any command through the MQTT protocol, MQTT invokes the associated callback in its worker thread. The 

main application generally does not process the incoming command in the same thread from which it 

received the message. The reason is sometimes, processing a message can take some time and as it is 

happening sequentially, it blocks the MQTT worker thread. This can cause message losses when the system 

is put under extreme stress. To avoid this, the application wishes to handle all the processing in its worker 

thread thereby keeping the MQTT thread as little worked as possible. Keeping the above design in mind, the 

MQTT thread unloads the complete payload onto the main application worker thread. The main question is 

how does the main thread start processing this incoming payload? The main worker thread is handled by the 

SysTimer tool. As per SysTimer design, whenever the timer assigned to a timer ID expires, it invokes the 

callback assigned to it. When the MQTT thread unloads the payload onto the main worker thread, the main 

thread assigns a timer ID to it with a zero time to expire. When SysTimer checks for the next time to expire 

in its array of timer IDs, it notices a timer ID with zero time to expire. This helps to invoke the callback in 

the context of the main application worker thread. SysTimer helps any application redirect any operation to 

run in the context of the main application worker thread. 

 

Result 

SysTimer led to the development of various tools that became an integral part of our IoT infrastructure. We 

compared the results of our application with SysTimer and without SysTimer. Without SysTimer, all the 

MQTT messages were processed in the MQTT thread. We sent around 100 MQTT messages in fast 

succession. We observed a substantial delay between the sending of commands and its effect on a smart 

device in the latter commands. The MQTT thread processes the next command only after successfully 

writing the command to the smart device socket. 

This sequential processing in the context of the MQTT thread added up the processing delays. As the 

MQTT thread is busy, the next incoming command remains in the MQTT queue and hence adds up the 

processing delays. After performing this experiment for 5 times, we observed that the time the last 

command was sent and time the smart device responded for that last command was approximately 10 

seconds apart. 

SysTimer made sure that all this hassle was avoided. With SysTimer, there were no delays in the MQTT 

command processing. There was almost no delay in command being sent and the smart device responding to 

the command. While processing the 100th command, the maximum delay that was observed between the 



Volume 5 Issue 3                                             @ 2019 IJIRCT | ISSN: 2454-5988 

IJIRCT2411070 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4 

 

command being sent to the command reflecting on the smart device was approximately 1 sec. 

The overall improvement with SysTimer was around 90%. We tried this experiment on a single core 

processor, hence all the MQTT commands were processed in a sequential manner but it unblocked the 

MQTT thread and there was no queueing in the MQTT thread. 

 

Future Enhancements 

SysTimer, a memory-efficient tool for embedded systems, currently employs an array data structure to store 

and manage timer IDs. While effective for smaller workloads, the linear search required to find the next 

timer to expire can introduce processing delays as the number of timers increases. To address this limitation, 

future iterations of SysTimer could explore the implementation of a priority queue data structure. By 

organizing timer IDs based on their expiration times, a priority queue would enable constant retrieval of the 

next timer to expire, significantly improving performance and responsiveness, especially in scenarios with a 

large number of concurrent timers. 

 

Conclusion 

SysTimer has proven to be an invaluable tool in optimizing the performance of IoT applications, 

particularly those running on single-core processors. By offloading the processing of incoming MQTT 

messages from the MQTT thread to the main application worker thread, SysTimer effectively prevents the 

MQTT thread from becoming blocked and ensures timely message processing. 

This study demonstrated a significant improvement in application responsiveness and efficiency when 

SysTimer was used. Compared to the application without SysTimer, which experienced substantial delays in 

processing MQTT messages, the SysTimer-enabled application exhibited a near-instantaneous response 

time. This improvement is attributed to SysTimer's ability to efficiently manage task scheduling and 

execution, ensuring that the MQTT thread remains free to handle incoming messages promptly. 

In conclusion, SysTimer is a crucial component for building high-performance IoT applications that rely on 

MQTT for interprocess communication. Its ability to offload tasks to the main application worker thread and 

its efficient task scheduling mechanism make it a valuable tool for optimizing performance and ensuring 

reliable operation in resource-constrained environments. 

 

Reference 

1. Rose, Karen, Scott Eldridge, and Lyman Chapin. "The internet of things: An overview." The internet 

society (ISOC) 80.15 (2015): 1-53. 

2. Atmoko, Rachmad Andri, Rona Riantini, and Muhammad Khoirul Hasin. "IoT real time data acquisition 

using MQTT protocol." Journal of Physics: Conference Series. Vol. 853. No. 1. IOP Publishing, 2017. 


