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Abstract: 

Home security cameras create a lot of video footage, making it tough to keep track of what to save and what 

to delete. This paper looks at the challenges of handling a lot of videos every day. It focuses on how videos 

are deleted based on time, retention, and user choice, all while keeping user privacy and costs in mind. 

MapReduce programming model can be leveraged to provide a solution that can scale and adapt easily and 

help with data cleaning and managing access. Using smart optimizations such as metadata dumps and a 

"should serve" marker further improves efficiency and enhances scalability. This method helps smart home 

security cameras follow data retention rules, save on storage costs, and offer a safer and improved experience 

for users. 
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INTRODUCTION 

More and more smart home security cameras are popping up, which means there's a lot more video data being 

created. Lots of cameras are always on, recording and sending videos all the time. This makes it really tough 

for service providers to handle billions of videos every day. It's important to have good ways to take in and 

store data. It it important to manage video data properly, this includes the storage of video and purging video 

effectively. This is important for protecting user privacy, reducing storage costs, and ensuring the system 

works smoothly. Old ways of deleting data have a hard time managing the size and complexity of these 

systems. Checking a database with billions of records to find and remove old videos takes a lot of time and 

resources. Dealing with user deletions and making sure users can't access media right after it's deleted makes 

things a bit more complicated. This paper looks at the problems of keeping and deleting data in smart home 

security camera systems and suggests a scalable solution using the MapReduce programming model [2]. 

MapReduce can be used to carry out deletions based on time, retention, and user requests on a large scale 

while also keeping data private and being cost-effective. It shows how some optimization methods, like using 

metadata dumps and a "should serve" marker, can improve the deletion process to make it cheaper and easier 

to scale. Home security camera systems can handle video data well by using the suggested solution. This also 

helps meet certain data retention policies and gives users a safe and responsive experience. 

 

ARCHITECTURE AND WORKFLOW OF A SMART HOME SECURITY CAMERA SYSTEM 

This part gives a clear look at how a regular smart home security camera system is set up and how it works. 

It looks at the main parts that are important for handling and sharing media. We'll look at how the different 

parts work together to make video streaming, event detection, and user notifications happen—from when the 

camera catches an event to when it plays back on a user's device.  
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System Components  

One big challenge in creating a smart home security camera system is dealing with the huge amounts of video 

data that millions of cameras produce around the world. These cameras keep sending video streams, usually 

when they detect motion or sound, leading to millions of uploads every second. To handle a lot of data well, 

you need a robust and flexible setup for taking in, processing, and storing videos efficiently.  

Video Ingestion Workflow  

A video ingestion workflow in a smart home security camera system involves the following steps:  

Event Detection and Recording: The camera detects  something happening, like movement or noise, and 

starts recording video on the device.  

On-Device Chunking: The video that’s captured gets turned into smaller pieces right on the device. This 

chunking process can be based on time (like x-second chunks) or size (like yMB chunks). 

Upload to Cloud: The video fragments are uploaded to  Cloud.  

Authorization: The Cloud performs authorization checks to verify if the camera is authorized to upload video 

data. This is to ensure that only authorized devices can contribute to the media storage.  

Storage: Once authorized, the video data is stored in a distributed storage system [3].  

Media Storage Architecture  

The media storage architecture typically consists of two main components: 

Metadata Database: The camera ID, the start and end times, the type of event, and the location of the video 

are all stored in the database. For the video files saved in the object storage, there is also a link. This database 

is made so that metadata is easy to get to and can be either a normal SQL database or a NoSQL database.  

Object Storage: The video clips are kept in a storage system designed to handle and access large amounts of 

unstructured data efficiently. This system should ideally be highly available, reliable, cost-effective and 

secure. 

Video Serving and Playback  

When a user requests to view a video, the following steps  occurs:  

Manifest Generation: The Adaptive Streaming Service creates a list that shows the URLs of the video 

segments needed for playback during a certain time. The metadata database helps find where the video chunks 

are stored, which is necessary for the manifest.  

Segment Download: The app downloads the video segments from the storage using the URLs in the manifest.  

Video Playback: The app's video player puts together and plays the downloaded video clips.  

As discussed above, it is important to separate the metadata and video data storage for optimal performance 

and is more scalable. 
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CHALLENGES OF DATA RETENTION AND DELETION AT SCALE 

Handling video data from start to finish for a smart home security camera system means taking care of how 

we take in and store the data, as well as having good plans for keeping or deleting it when needed. There are 

millions of cameras sending video data every second, leading to billions of videos saved in the cloud each 

day. Ensuring that video data gets deleted on time and with no dangling pointers to videos is a big challenge. 

There are two main challenges when it comes to purging video data in large amounts. 

Time-Based and Retention-Based Deletion  

Security camera services usually have different subscription plans, and the higher plan lets you retain videos 

for a longer period. So users can access their videos longer. Once the retention period has expired, it's 

important to purge expired video data. This process of deleting based on time and retention is important for a 

few reasons:  

Customer Privacy: Getting rid of old video data helps keep user privacy safe by making sure personal videos 

aren't stored and accessible. So users can have trust that their privacy is maintained. 

Storage Cost Optimization: Purging expired videos helps clear up storage space and lowers the costs of 

storing and managing outdated data in the cloud.  

Database Efficiency: Getting rid of extra data in the metadata database makes queries run faster and cuts 

down on indexing work.  

With so many cameras uploading video content, it’s likely that billions of videos need to be deleted every day 

to keep things running smoothly and follow data retention rules. We need strong and automatic ways to find 

and remove old video data from the system.  

User-Initiated Deletion  

The second challenge is when users want to delete their video data, whether it's for certain cameras or for their 

whole account. This deletion request should ensure that once user gets a successful response then the video 

should not be accessible. This also means eventually purging tons of video data, which could be months or 

years' worth, totaling billions of data points. 

The main challenge is to make sure that during the deletion process, no video data set for deletion is shown 

to anyone, even the person who owns it. This is important for keeping user privacy safe and following data 

protection rules. 

To tackle this issue, a solid approach is to use storage tags or markers to point out data that needs to be deleted. 

The system can block access to the data right away, even before it's actually taken out of storage. This makes 

sure that user privacy is kept safe during the deletion process. 

Dealing with data deletion issues is really important for keeping user trust and making the most of storage 

costs. It's important to make sure the smart home security camera system works well and can grow as needed. 

 

EFFICIENT DATA DELETION AT SCALE WITH MAPREDUCE 

Handling the storage and removal of billions of videos created every day by smart home security cameras is 

quite a challenge. This part suggests a solution using the MapReduce programming model to tackle these 

issues in a way that is both affordable and dependable.  

MapReduce for Time-Based and Retention-Based Deletion MapReduce works really well for handling big 

datasets at the same time across a group of machines. We can use MapReduce to quickly find and delete old 

video data based on time and retention rules.  

Map Phase: During this stage, several map tasks operate at the same time, each handling a portion of the 

metadata database. Every task looks through the records they are assigned and finds videos that have gone 

past their retention period by checking their timestamps and subscription tier details. The map tasks produce 

key-value pairs required for the next step. The key should be a unique ID for the video, and the value should 

indicate if the video needs to be deleted or retained.  
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Reduce Phase: The reduce tasks get the output from the map tasks. They gather the results and create a list 

of video IDs that need to be removed. This list is used to remove the related video data from storage and the 

metadata from the database. 

MapReduce helps quickly find and delete billions of video records by spreading the work across several 

machines. This method helps to clear out data on time without bothering other system tasks too much. 

MapReduce for User-Initiated Deletion 

For user-initiated deletion, MapReduce can again be leveraged.  

Map Phase: The map tasks work on part of the metadata database to find videos linked to the camera(s) or 

account the user has chosen. The tasks then provide key-value pairs, with the key being the video ID and the 

value containing details such as the storage location and a deletion flag.  

Reduce Phase: The reduce tasks process the output from the map tasks. They can perform the following 

actions:  

Immediate Access Blocking: Put a "delete" tag or marker on the video data in the object storage to prevent 

access to it, even before it’s physically deleted. This keeps user privacy safe while deleting things.  

Deletion Coordination: Final step is to physically delete the actual video along with the video metadata. This 

keeps things consistent and stops any data from being left behind. 

Optimizing MapReduce with Metadata Dump 

Scanning the entire metadata database for each MapReduce job is expensive and not the only option, 

especially for frequent deletion tasks. To further optimize the process, we can introduce a metadata dump 

mechanism:  

Periodic Dump: There can be a job that periodically (say daily) scans the entire database and dump all the 

necessary records and if needed perform joins and store the data in a de-normalized way which will prevent 

any database access for the actual deletion run. 

MapReduce on Dump: Run the MapReduce jobs on this periodic dump instead of querying the database 

directly. This lightens the database's workload and speeds up processing. 

Challenges of Real-Time Tagging  

A simple way to stop showing deleted videos is to quickly add a "delete" tag to the metadata of each video 

when a user asks for it to be removed. This brings up some big challenges: 

Size and Expense: Changing billions of records all at once requires a lot of computing power and can really 

strain database resources. 

Atomicity and Reliability: It's really hard to make sure everything runs well and reliably for a big update 

like this. If something goes wrong, it can lead to issues and let some information get out. 

A Different Way: "Should Serve" Indicator 

Rather than tagging each video, we could use a marker at the camera level to manage who can access the 

videos. This marker can be a growing whole number. Let's call this a "should serve" marker. 

Ingestion Tagging: Each video that a camera uploads gets tagged with the current "should serve" marker value 

linked to that camera. 

Before serving any video, the system needs to check the video's marker tag with the camera's current "should 

serve" marker. Videos should only be shown if they have the same tags. 

When a user starts the deletion process, the camera's "should serve" marker needs to go up by 1. This makes 

all the videos that were uploaded before unavailable because their tags don't match the camera's marker 

anymore. 

Sample:At time 0, the camera's "should serve" marker is set to 1. From time 1 to time N, every video that gets 

uploaded is marked with 1. At time M, a user asks to delete something. The camera's "should serve" marker 

goes up to 2. Any later tries to watch videos uploaded between time 1 and N will be turned away because their 

tags (1) are below the current "should serve" marker (2). 
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Advantages of the "Should Serve" Marker 

This method has the following: 

It only takes one record update to stop access to billions of videos by just changing the camera's “should 

serve” marker. 

Simplicity. Putting a video tag when the video is uploaded and having the service check it while serving the 

video helps avoid the need to update billions of records all at once. Once the marker goes up, you can't access 

deleted videos anymore. 

This method allows us to quickly block access to deleted videos and promptly remove the marked videos and 

their backups, ensuring we comply with data retention rules and privacy laws. 

This optimization makes the MapReduce-based deletion process more efficient and scalable, helping smart 

home security camera systems handle user deletions more easily while improving data privacy. 

 

FUTURE ENHANCEMENTS 

While the proposed MapReduce-based solution with metadata dump and "should serve" marker optimizations 

offers significant improvements in data deletion efficiency and scalability, there are further enhancements that 

can be explored to further refine the system:  

Incorporating Machine Learning for Predictive Deletion  

You can use machine learning to figure out how people watch videos and to get rid of data that isn’t accessed 

often. Looking at past access logs and how users behave, machine learning models can spot videos that 

probably won't be accessed much in the future. This helps to delete those videos ahead of time, making storage 

cheaper and easing the deletion process. A machine learning model may be able to infer that for certain users, 

videos older than 2 weeks have no  interactions are hardly ever watched and could automatically flag them 

for deletion by notifying the user in advance before doing so and may be able to offer some discounts to users 

depending on savings.  

Exploring Alternative Distributed Processing Frameworks 

MapReduce is a good way to handle big data, but looking into other distributed processing options might help 

us find even better ways to be efficient. 

Enhancing Metadata Dump Efficiency  

The efficiency of the metadata dump process can be further improved by exploring ideas such as:  

Incremental Dumps: Rather than dumping the whole metadata database blindly, a job can do incremental 

dumps that only include the changes since the last one. This cuts down on the amount of data and the time it 

takes to process each dump.  

Data Compression: Opt in for various compression techniques on the metadata dumps to reduce storage 

space and network transfer costs.  

Optimized Dump Scheduling: Change the dump frequency based on things like how often data gets updated 

and deleted to make the best use of resources.  

 

CONCLUSION 

This paper looked at the important issues of handling data storage and deletion in smart home security camera 

systems, where billions of videos are created and kept every day. We suggested a solution that is easy to scale 

and budget-friendly, using the MapReduce programming model to tackle the challenges of time-based, 

retention-based, and user-initiated deletions. Using MapReduce's ability to process things at the same time, 

we can easily find and remove old videos. This helps us follow data rules and save on storage costs. The new 

"should serve" marker optimization allows for quick blocking of access to deleted videos, ensuring user 

privacy without the need to update billions of individual records. This approach using MapReduce and 

optimizing metadata dumps offers a strong and flexible way to handle video data in smart home security 
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camera systems. This helps delete data efficiently, cuts down on storage costs, and boosts user privacy, making 

the system more sustainable and focused on users. Future research can look into more ways to improve things, 

like using machine learning to guess how people watch videos and getting rid of data that isn't accessed often. 

Looking into other distributed processing frameworks and how they might work in this area could help make 

things more efficient and scalable. 
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