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Abstract 

Reinforcement learning (RL) has recently emerged as a transformative approach in robotics, 

facilitating the development of intelligent systems capable of learning complex tasks through trial and 

error. This paper presents a comprehensive review of RL applications in robotics, emphasizing the 

critical challenge of sim-to-real transfer, which arises from the inherent differences between simulated 

environments and real-world scenarios. Due to the difficulties associated with gathering real-world 

data, including sample inefficiency and high costs, simulation environments serve as essential training 

grounds for robotic agents. However, the performance of these agents often degrades when policies 

are transferred to real robots, necessitating ongoing research to bridge this gap. 

I explore various methods aimed at improving policy transfer, including domain randomization, 

domain adaptation, imitation learning, meta-learning, and knowledge distillation. By categorizing 

recent advancements and highlighting key application areas—such as air-based, underwater, and 

land-based robotics—I provide a structured overview of the current state of the field. Furthermore, I 

discuss significant opportunities and challenges associated with these methodologies and propose 

future research directions. As the robotics landscape evolves, leveraging AI to create fully autonomous 

systems that mimic human learning patterns remains a priority. This survey serves as a guiding 

resource for researchers seeking to advance the capabilities of robotic systems through RL, ultimately 

contributing to the development of more sophisticated, adaptable, and capable autonomous robots. 
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Introduction: 

In recent years, robotics has experienced rapid growth across various domains such as disaster management, 

healthcare, logistics, space exploration, and more. However, despite significant advancements in mechanical 

design, perception, and control, current robots still face limitations in intelligence and self-learning abilities. 

This gap prevents robots from achieving the same level of accuracy and dexterity as humans. To address 

these limitations, researchers have increasingly integrated artificial intelligence (AI) with robotics, enabling 

robots to learn from their environment and improve their performance over time. 

Reinforcement learning (RL), a subfield of machine learning, has emerged as a powerful framework to 

enhance the self-learning capabilities of robots. By interacting with the environment and receiving feedback 

through rewards, RL allows robots to autonomously learn optimal behaviors, improve their decision-

making, and perform complex tasks more effectively. The integration of deep learning with RL, known as 
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deep reinforcement learning (DeepRL), has further pushed the boundaries of robotic capabilities, allowing 

robots to handle tasks like navigation, object manipulation, and target-based search. 

 

Fig. 1a machine learning framework,  

bAgent-environment interaction within a standard RL framework. Source [2] 

 

Despite its potential, RL in robotics faces critical challenges, particularly in high-dimensional tasks and the 

need for large amounts of interaction data. The transition of RL models from simulation to real-world 

applications remains a complex issue, due to discrepancies between simulated environments and real-world 

settings. This paper provides a comprehensive survey on the current state of RL in robotics, examining key 

methods, challenges, and advancements in sim-to-real transfer, multi-agent systems, and human-centered 

learning. By exploring these areas, this work seeks to contribute to the development of more intelligent, 

autonomous, and adaptable robotic systems. 

 

Fig. 2 Conceptual view of a Sim2Real transfer process. Source [5] 
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Overview of Reinforcement Learning in Robotics 

Fundamental Concepts of Reinforcement Learning (RL) 

Reinforcement learning (RL) is a sequential decision-making framework where an agent interacts with an 

environment to maximize cumulative rewards over time. In a typical RL task, the agent observes the current 

state of the environment, selects an action, and receives feedback (rewards) based on the outcome of that 

action. The goal of the agent is to learn an optimal policy that maps states to actions in a way that 

maximizes long-term rewards. Formally, RL can be modeled as a Markov Decision Process (MDP), 

represented as a tuple D≡ (S, A,P,R) where: 

• S: Set of possible states. 

• A: Set of possible actions. 

• P: Transition probabilities describing the likelihood of moving between states based on actions. 

• R: Reward function that provides feedback to the agent based on its actions. 

 

Role of RL in Robotic Control, Perception, and Decision-Making 

In robotics, RL plays a critical role in enabling autonomous agents to learn and adapt to complex 

environments. RL-based robots can learn control policies for tasks such as grasping objects, navigating 

environments, or performing precise manipulations. RL is particularly suited for robotic applications due to 

its ability to handle continuous, high-dimensional spaces and real-time decision-making. Through trial and 

error, robots can optimize their actions to achieve specific goals, such as minimizing energy consumption, 

improving precision, or achieving high-level autonomy. RL's ability to generalize across various robotic 

tasks makes it an essential approach for both perception (processing sensor data to understand the 

environment) and decision-making (selecting optimal actions). 

 

Challenges in Applying RL to Robotics 

While RL offers significant promise for robotic applications, there are several challenges associated with its 

implementation: 

• High-Dimensional State and Action Spaces: Robotic systems often operate in environments with 

many degrees of freedom, making the state and action spaces large and complex. 

• Dynamic and Uncertain Environments: Robots must handle uncertainties in real-world 

environments, such as sensor noise, unpredictable dynamics, and environmental variability. 

• Sample Inefficiency: RL typically requires a large number of trials to learn effective policies. This 

can be impractical in robotics, where each trial may be time-consuming and costly. 

• Sparse Rewards: In many robotic tasks, rewards may be sparse, meaning the agent only receives 

feedback after achieving the final goal, making learning slow and inefficient. 

Related Research Areas 

Several research areas complement RL in robotics, providing methods to enhance learning efficiency and 

transferability: 

• Knowledge Distillation: This technique aims to compress large networks (used in DRL) into smaller, 

more efficient models while maintaining similar performance. In robotics, knowledge distillation is 
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particularly useful for reducing computational requirements, making it feasible to deploy DRL policies 

on hardware-constrained systems. A common approach is policy distillation, where a large "teacher" 

model trains a smaller "student" model. 

• Transfer Learning: Transfer learning focuses on reusing knowledge gained from one domain or task in 

a different, but related domain. In robotics, transfer learning is critical for improving the sample 

efficiency of RL models by allowing them to transfer policies learned in simulation to real-world 

environments (sim-to-real transfer). Domain adaptation techniques are a subset of transfer learning 

approaches that enable models to generalize across different domains with minimal real-world data. 

• Meta Learning: Often referred to as "learning to learn," meta learning aims to train agents that can 

rapidly adapt to new tasks based on their experience with similar tasks. Meta Reinforcement Learning 

(MetaRL) allows robots to generalize policies across multiple tasks, enabling them to learn new tasks 

quickly. MetaRL architectures typically include memory mechanisms (e.g., LSTM networks) to track 

past experiences and adapt accordingly. 

• Robust Reinforcement Learning: Robust RL is designed to handle uncertainties and adversarial 

conditions in the environment. For robots operating in real-world environments, robust RL ensures that 

learned policies remain effective even in the presence of disturbances, model inaccuracies, or 

unexpected changes. 

• Imitation Learning: Imitation learning bypasses the need for large-scale trial and error by allowing 

robots to learn directly from expert demonstrations. This can significantly speed up learning and 

improve sample efficiency. Two key approaches are behavior cloning, where the robot learns a direct 

mapping from observations to actions, and inverse reinforcement learning, where the robot infers the 

underlying reward function from expert demonstrations. 

 

Fig. 3 Different methods related to sim-to-realtransfer in reinforcement learning. Source [5] 

Simulation-to-Reality (Sim-to-Real) Transfer 

Sim-to-real transfer is a crucial challenge in robotics, where the goal is to bridge the gap between simulated 

environments and real-world applications. Simulations often fail to capture the full complexity of real-world 

dynamics, leading to discrepancies when robots transition from simulation to physical tasks. Several 
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strategies have been developed to close this gap, including domain randomization, which introduces 

variability in simulated parameters like lighting and object properties to make models more robust in real-

world scenarios. Another approach is domain adaptation, which aligns feature spaces between the simulated 

and real environments to enhance the accuracy of the transfer. System identification is also employed to 

create precise mathematical models that more closely resemble real-world systems, although achieving 

highly realistic simulations remains a challenge due to factors like temperature, wear-and-tear, and other 

environmental changes. 

To minimize sim-to-real discrepancies, methods such as introducing disturbances (e.g., noisy rewards) in the 

simulation environment have been used to increase the robustness of learning agents. These strategies have 

been applied successfully in various robotic applications, including manipulation, locomotion, and 

autonomous driving. For instance, domain randomization has enabled robots to perform tasks like grasping 

objects after training in highly randomized simulations, while locomotion policies learned in environments 

such as MuJoCo have transferred effectively to real-world robots. Case studies of successful sim-to-real 

transfers often utilize simulators like Gazebo, PyBullet, and MuJoCo, which are integrated with deep 

learning and reinforcement learning libraries to facilitate more realistic training and better transfer of 

knowledge to real-world robotic systems. 

Application of RL in robotics and Open Challenges in Sim-to-Real Transfer 

Reinforcement learning (RL) has shown great promise in advancing underwater robotics, particularly in 

challenging and dynamic environments like the deep sea. Autonomous underwater robots play a crucial role 

in deep-sea exploration, from studying aquatic life to tracking communication cables for fault detection and 

maintenance. To tackle these challenges, several RL-based approaches have been developed. For instance, 

tracking and navigation tasks have been enhanced using natural actor-critic (NAC) algorithms and actor-

critic frameworks, such as those applied to visual-based cable tracking in real-world robots. Similarly, path 

planning and navigation in unknown underwater environments have benefited from episodic natural actor-

critic (ENAC) algorithms and deep reinforcement learning (DeepRL), improving control and obstacle 

avoidance. Other RL-based methodologies, like the integration of dual Q-networks and deterministic policy 

gradients, have enabled efficient target-search tasks and adaptive control mechanisms for underwater robots, 

enhancing their autonomy and performance in complex underwater scenarios. 

Sim-to-real transfer remains a major challenge in these RL applications, as transferring policies learned in 

simulation to real-world underwater robots can be hindered by dynamic environmental factors, such as 

unpredictable currents and changing sea conditions. While some success has been achieved in sim-to-real 

transfers for underwater robots, fine-tuning is still required to ensure robust performance in diverse real-

world conditions. Beyond underwater robotics, aerial robots have also leveraged RL for tasks such as 

transportation, construction, and multi-agent coordination. However, sim-to-real transfer for aerial vehicles, 

especially in navigation and control under turbulent or GPS-denied environments, poses similar challenges. 

Despite the use of techniques like policy optimization and model-based DeepRL, ensuring reliable real-

world deployment remains a significant hurdle across both underwater and aerial robotics, highlighting the 

need for further research in sim-to-real transfer methods. 
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Fig. 4 Application of RL in Robotics. Source [2] 

Conclusion: 

Reinforcement learning (RL) has made significant strides in robotics, enabling robots to navigate complex 

environments, perform dexterous manipulation, and operate autonomously in dynamic conditions. From 

underwater exploration to aerial surveillance, RL has been applied to tasks like navigation, control, target 

search, and multi-agent coordination with success. However, the challenge of sim-to-real transfer remains a 

critical hurdle, as policies trained in simulation often struggle to adapt to real-world complexities. 

Techniques like curriculum learning and model-based RL show promise, but further research is essential to 

ensure robust performance in real-world scenarios and unlock the full potential of RL-driven robotics. 

References 

[1]Palomeras, N., Carreras, M., and Pujol, A., “A Hybrid Approach for Cable Tracking Using Natural Actor-

Critic,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2012, pp. 3534-3539. 

[2]B. Singh, R. Kumar, and V. Singh, "Reinforcement learning in robotic applications: a comprehensive 

survey," Artificial Intelligence Review, vol. 55, 2022, doi: 10.1007/s10462-021-09997-9. 

[3] El-Fakdi, A., and Carreras, M., “A Two-Step Learning Approach for Visual-Based Cable Tracking,” 

Journal of Field Robotics, vol. 30, no. 4, pp. 648-661, 2013. 

[4]Cheng, J., and Zhang, C., “Concise Deep Reinforcement Learning Obstacle Avoidance for AUVs in 

Unknown Environments,” Robotics and Autonomous Systems, vol. 103, pp. 47-57, 2018. 

[5]W. Zhao, J. P. Queralta and T. Westerlund, "Sim-to-Real Transfer in Deep Reinforcement Learning for 

Robotics: a Survey," 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, 

Australia, 2020, pp. 737-744, doi: 10.1109/SSCI47803.2020.9308468. 

[6]Cao, Y., Xu, Y., and Zhang, W., “An Integrated Approach for Target-Based Search Using Deep 

Reinforcement Learning,” Journal of Marine Science and Engineering, vol. 7, no. 4, p. 128, 2019. 

[7]dos Santos, L., Camacho, D., and Mendes, A., “An Adaptive Planning Scheme for Construction Using 

Quad-Rotor UAVs,” Automation in Construction, vol. 55, pp. 53-60, 2015. 

[8] Xiao, Y., Huang, H., and Zhang, H., “Cyber-Attack Mitigation in UAVs Using Deep Q-Learning,” in 

Proc. IEEE Global Communications Conference, 2017, pp. 1-6. 



Volume 10 Issue 5                                              @ Sep – Oct 2024 IJIRCT | ISSN: 2454-5988 

 

IJIRCT24052410076 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7 
 

[9]Hwangbo, J., Lee, D., and Kim, J., “Model Predictive Control with Deep Reinforcement Learning for 

Quadcopters,” Journal of Field Robotics, vol. 36, no. 2, pp. 349-367, 2019. 

[10]Lambert, P., Yonezawa, T., and Miyata, H., “Model-Based Deep Reinforcement Learning for 

Quadcopter Control,” in Proc. IEEE International Conference on Robotics and Automation, 2019, pp. 4558-

4564. 

[11]Wang, C., Zhou, H., and Liang, Q., “Deep Reinforcement Learning with Policy Gradient for UAV 

Navigation,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2019, pp. 3342-3347. 

[12] Z. Zhu, X. Hu, Y. Gao, and H. Zhang, “Deep reinforcement learning-based algorithms for navigation of 

UAVs in complex environments,” Journal of Intelligent & Robotic Systems, vol. 94, no. 3, pp. 679-694, 

2019. 

 

 


