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Abstract 

The aim of the present paper is to know the applications of Inner product spaces. We can 

approximate a line or a polynomial for a set of points in the plane. The method of approximating a 

line or a polynomial for a set of points in the plane s the method of least squares. An inner product of 

two vectors in a vector space is a scalar which is the product of transpose of first vector and second 

vector. The cosine angle between two vectors can be finding by using the inner product and the length 

of vectors. We defined orthogonal vectors, orthonormal vectors, orthogonal basis and orthonormal 

basis and Gram-Schmidt orthogonalization process. 

By using the least squares method, we can find a line or polynomial for a given set of points in the 

plane. By using the method of least squares we can approximate exponential, logarithmic and 

trigonometric functions to a line or a polynomial. 

Keywords: Inner product, Norm of a vector, angle between two vectors, orthogonal vectors, 

orthonormal vectors, Schwarz’s inequality, Triangle inequality,Pythagoras theorem, Gram-Schmidt 

orthogonalization process, the method of least squares. 

INTRODUCTION 

(1) Inner product of two vectors: Inner product of two vectors u andvof a vector space 

is denoted by u. v anddefined asuTv. 

If u=

[
 
 
 
 
 
 
 𝑢1

 𝑢2

 𝑢3

−
−
−
 𝑢𝑛]

 
 
 
 
 
 

v=

[
 
 
 
 
 
 
 𝑣1

𝑣2

𝑣3

−
−
−
 𝑣𝑛]

 
 
 
 
 
 

then u. v=  uT v=⌈ 𝑢1 𝑢2 𝑢3 − − − −   𝑢𝑛⌉

[
 
 
 
 
 
 
 𝑣1

𝑣2

𝑣3

−
−
−
 𝑣𝑛]

 
 
 
 
 
 

 

       = 𝑢1 𝑣1 +  𝑢2𝑣2+ 𝑢3𝑣3+---------+ 𝑢𝑛𝑣𝑛 

 

Example:If u=[
1
4

−6
],v=[

2
6
9
] are vectors in R3  then u. v= uTv=[1  4 − 6] [

2
6
9
]     =1.2+4.6+(-6).9 =2+24-54=-

28 

Hence the inner product of u, v=u. v=-28 

(2) Inner Product Space 

An inner product on a vector space V is a function f that, to each pair of vectors u and v in V, associates a 

real number f(u.v) and satisfies the following axiomsfor all u, v, and w in V and all scalars c  
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1. f (u.v) =f (v.u) 2. f(u+v, w)=f(u,w)+f(v,w)     3. f (cu,v) =c f(u,v) 4.f (u.u) ≥0 and u.u=o if and only if 

u=0. A vector space with an inner product f  is called an inner product space.  

(3) Length of a Vector: The length of a vector u is denoted by u and defined as || u || =√𝐮. 𝐮 

 

Example: If u= [
1

−2
3

] then || u || =√[1 −  2  3] [
1

−2
3

]=√(1)2 + (−2)2 + (3)2=√1 + 4 + 9 =√14. Hence || u 

||= √14 

(4) Unit Vector: A vector u in Rn is said to be a unit vector if length of u is 1 i.e. || u || =1 

As || 
𝒖

|| 𝐮 || 
|| =1,

𝒖

|| 𝐮 || 
 is unit vector in direction of u. 

Ex:𝐼𝑓 𝒖 =

[
 
 
 
 

1

√ 3

−
1

√ 3

−
1

√ 3]
 
 
 
 

 then u is a unit vector because || u || =√ (
1

√3
)2 + (

−1

√3
)2 + (

−1

√3
)2  =  √

1

3
+

1

3
+

1

3
 = √

3

3
 = 1  

(5) Angle between two vectors 

 

Definition:If u,v are two vectors and θis angle between u, v thencos θ=
𝒖.𝒗

|| 𝐮 |||| 𝐯 ||
 

Example: If u=[
1

−3
2

],v=[
1
6
9
] then cos θ=

[1− 3  2][
1
6
9
]

|| [
1

−3
2

] || || [
1
6
9
] ||

=
1(1)+(−3)(6)+2(9)

(√ (1)2+(−3)2+(2)2)) (√(1)2+(6)2+(9)2 )
 =

1−18+18

√14√118
 

=
1

2√413
⇒ cos θ =

1

2√413
 

Hence the angle between two vectors u= [
1

−3
2

] ,v=[
1
6
9
]  𝑖𝑠 θ = cos−1(

1

2√413
) 

(6) Orthogonal vectors 

 

Definition: Orthogonal vectors two vectors u,v are said to be orthogonal vectors if angle between u, v is900 

i.e.cos θ=cos900=0.Hence two vectors u, v are said to be orthogonal vectors if cos θ =

0,𝑤ℎ𝑒𝑟𝑒 θ is the angle between the vectors 𝐮, 𝐯. 

Example: If u= [
1
4

−6
],v=[

2
−5
−3

] then u. v=uT v =1(2) + 4(−5) + (−6)(−3)=2-20+18=0 

Hence u. v=0. ∴u, v are orthogonal vectors as u. v=0.  

(7) Orthogonal set 

Definition: A set {u1, u2 ……….un} of vectors in Rn is said to be orthogonal set if every two different vectors 

of {u1, u2 ……….un} are orthogonal. 
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Example: If S= {[
  1
−1
  2

] , [
  1
−1
 −1

] , [
  3
  3
  0

]} R3then S is an orthogonal set. 

 Because [
  1
−1
  2

] , [
  1
−1
 −1

] ; [
  1
−1
 −1

] , [
  3
  3
  0

] ;  [
  1
−1
  2

] , [
  3
  3
  0

]are orthogonal vectors 

as the inner product of 1)[
  1
−1
  2

],[
  1
−1
 −1

]= [1 -1 2][
  1
−1
 −1

]=1(1) +(-1) (-1) +2(-1) =1+1-2=0 

 2)  [
  1
−1
 −1

] [
  3
  3
  0

] =[1 -1 -1][
  3
  3
  0

]=1(3) +(-1)3+(-1)0=3-3+0=0 

 3) [
  1
 −1
  2

], [
  3
  3
  0

] =[1 -1 2] [
  3
  3
  0

] =1(3) +(-1)3+2(0) =3-3+0=0 

 

(8) Orthonormal set 

 

Definition: A set {u1, u2 ………. un} of is said vectors in  Rn orthonormal set if it is orthogonal set and every 

vector of it is a unit vector. 

Example:S={

[
 
 
 
 

1

√3

−
1

√3
1

√3 ]
 
 
 
 

, [

1

√2
1

√2

 0

]}is an orthonormal set in R3as it is orthogonal set and every vector in it is unit 

vector. Because the vectors

[
 
 
 
 

1

√3

−
1

√3
1

√3 ]
 
 
 
 

, [

1

√2
1

√2

 0

]are orthogonal and unit vectors. 

Because Inner product of =

[
 
 
 
 

1

√3

−
1

√3
1

√3 ]
 
 
 
 

, [

1

√2
1

√2

0

]=[
1

√3
 −

1

√3

1

√3
] [

1

√2
1

√2

 0

]=
1

√3
(

1

√2
) + (−

1

√3
)(

1

√2
)+(

1

√3
)(0)=

1

√6
−

1

√6
+0=0. 

Also || 

[
 
 
 
 

1

√3

−
1

√3
1

√3 ]
 
 
 
 

  || = √( 
1

√3
)2 + ( −

1

√3
)2 + ( 

1

√3
)2== √

1

3
+

1

3
+

1

3
 = √

3

3
 = √1 = 1 

 || [

1

√2
1

√2

 0

] || = √(
1

√2
)2 + (

1

√2
)2 + (0)2=√

1

2
+

1

2
+ 0  =√1 + 0 =√1 

(9) Orthogonal basis 

 

Definition: A set 𝐵 = {∝𝟏,∝𝟐, ∝𝟑,…………, ∝𝒏} of vectors in Rn is said to be orthogonal basis if 
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1)𝐵 = {∝𝟏,∝𝟐, ∝𝟑,…………, ∝𝒏} is orthogonal set in Rn  2) 𝐵 = {∝𝟏,∝𝟐, ∝𝟑,…………, ∝𝒏} is a basis of 

Rn.Example:The set S={[
2
1

−1
], [

1
1
3
] [

4
−7
1

]} is an orthogonal basis of R3. 

Because [
2
1

−1
], [

1
1
3
] ; [

1
1
3
] , [

4
−7
1

]; [
2

1

−1
] , [

4

−7
1

]are orthogonal vectors  

and the vectors [
2

1

−1
], [

1

1

3

] [
4

−7
1

]forms a basis for R3.(∵[
2

1

−1
], [

1

1

3

] [
4

−7
1

] are Linearly Independent vectors, 

every vector of R3 is a linear combination of vectors 

[
  2
  1
−1

], [
1

1

3

] [
   4
−7
  1

])                              

Example:S={[
1

1

8

] , [
   3
   5
−1

],[
 0
  0
  0

]}is an orthogonal set but not an orthogonal basis. Because S is not a linearly 

independent set so that S is not a basis. 

(10) Parallelogram Law 

Theorem: If u, v are two vectors then||𝐮 + 𝐯|| 𝟐+||𝐮 − 𝐯|| 𝟐=2(||𝐮|| 𝟐+ (||𝐯|| 𝟐) 

Example: Consider the two vectors 𝒖 = [
  2
−1
   3

],v=[
  1
  4

  −5
].Here u + v=[

   3
    3
  −2

],u-v=[
  1
−5
   8

] 

||u+v||=√(3)2 + (3)2 + (−2)2  =√9+ 9+ 4  =√22. 

||u-v||=√(1)2 + (−5)2 + (8)2  =√1+ 25+ 64  =√90.Hence ||𝐮 + 𝐯|| 𝟐+||𝐮 − 𝐯|| 𝟐 =112. 

||𝐮 + 𝐯|| 𝟐+||𝐮 − 𝐯|| 2=(√22)2+(√90)2=22+90=112 …………………... (1) 

||u||=√(2)2 + (−1)2 + (3)2  =√4+ 1+ 9  =√14⇒||𝐮|| 𝟐=14. 

||v||=√(1)2 + (4)2 + (−5)2  =√1+ 16 + 25  =√42⇒||𝐯|| 𝟐=42. 

Hence 2(||𝐮|| 𝟐+ (||𝐯|| 𝟐) = 2(14+42) =112…………… (2) 

∴ From equations (1), (2) we get  ||𝐮 + 𝐯|| 𝟐+||𝐮 − 𝐯|| 𝟐=2(||𝐮|| 𝟐+ (||𝐯|| 𝟐) 

(11) Schwarz’s Inequality 

Theorem: Ifu, v are two vectors in Rn then|u. v| ≤ ||𝐮||||𝐯|| 

 

 Example: Consider the two vectors 𝒖 = [
  1
   3
  −2

],v=[
  2
  6
  5

].Here u. v=uT v= [1 3 -2][
  2
  6
  5

] 

= 1(2) + 3(6)+(-2) (5) =10. ∴u. v =10 ⇒|u. v| = 10 
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||𝐮||=√(1)2 + (3)2 + (−2)2  =√1+ 9 + 4  =√14, 

||𝐯||=√(2)2 + (6)2 + (5)2  =√4+ 36+ 25  =√65 

Hence ||𝐮||||𝐯||=√14√65 =√910 

Hence |𝐮. 𝐯|2<||𝐮||||𝐯||2.  ∴|u. v|<||𝐮||||𝐯|| 

 

(12)Triangle Inequality 

 Theorem:If u, v are two vectors in Rn then ||u+v|| ≤ ||𝐮||+||𝐯|| 

 

Example: Consider the two vectors 𝒖 = [
  2
   3
  0

],v=[
 −4
   2
   4

]. Here u+v=[
 −2
   5
   4

], 

||u+v|| = √(−2)2 + (5)2 + (4)2 =√45, ||𝐮||=√(2)2 + (3)2 + (0)2=√13 

||𝐯|| =√(−4)2 + (2)2 + (4)2 =√36=6 

  As √45 < √13+ 6,we get ||u+v|| < ||𝐮||+||𝐯|| 

 

(13) Pythagoras theorem 

 

Theorem: If u, v are two vectors in an inner product space Rn then u, v are orthogonal if and only if 

||𝐮 + 𝐯||2 = ||𝐮||2+||𝐯||2 

 

Example: Consider two orthogonal vectors 𝒖 = [
−3
   4
  1

],v=[
 2
  3
− 6

]in R3. 

Here u + v=[
−1
   7
 −5

].Also if ||u+v||=√(−1)2 + (7)2 + (−5)2=√1+ 49 + 25 =√75 

∴||𝐮 + 𝐯||2 = 75. ||𝐮||=√(−3)2 + (4)2 + (1)2=√26,|||𝐯||=√(2)2 + (3)2 + (−6)2=√49 

Hence ||𝐮||2+||𝐯||2=75. ∴||𝐮 + 𝐯||2 = ||𝐮||2+||𝐯||2 

 

(14) Orthogonal Projection 

 

For a non-zero vector u in Rn , we can write a vector y in W,where W is a subspace of Rn as sum of two 

vectors such that one is multiple of u and other is orthogonal to u i.e.y=ŷ + z.Here we say y is decomposed 

in to two vectors such that one is multiple of u and other is orthogonal to z. 

Here ŷ is multiple of u, z is orthogonal to u. We can find z by using z=y- ŷ 

Here ŷ is defined as orthogonal projection of y on to u, where ŷ = (
𝒚.𝒖

𝒖,𝒖
 ) u 

We can take ŷ as ŷ=k u where k is a scalar. y=ŷ + z⇒z=y- ŷ. 

As z is orthogonal to u,z.u=o. z.u=0⇒ (y- ŷ). u =0⇒y. u- ŷ. u=0⇒y.u=ŷ. u⇒y. u= (k u). u 

⇒y. u=k (u. u) ⇒ k=
𝒚.𝒖

𝒖.𝒖
 .But ŷ=k u. ∴ŷ = (

𝒚.𝒖

𝒖,𝒖
 ) u 

Note: ŷ. (y- ŷ) = ŷ. (z)= (k u). z=k (u. z) =k (0) =0. Hence ŷ, y-ŷ are orthogonal vectors. 
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Example: Consider the vector u=[
  1
  3
  4

] in R3. Let us find the orthogonal projection of y=[
 2
  1
  1

] on to u. 

  y=[
 2
  1
  1

] , u=[
  1
  3
  4

]⇒y. u=yT u= [2 1 1][
  1
  3
  4

] =2(1) +1(3) +1(4) =2+3+4=9.  ∴y. u=9 

  u=[
  1
  3
  4

]⇒u. u=uT u= [1 3 4][
  1
  3
  4

] =1(1) +3(3) +4(4) =1+9+16=26.  ∴u. u=26 

ŷ = (
𝒚.𝒖

𝒖,𝒖
 ) u⇒ŷ=

9

26
[
  1
  3
  4

] =

[
 
 
 
 
9

26
27

26

36

26]
 
 
 
 

⇒ŷ=

[
 
 
 
 
9

26
27

26

36

26]
 
 
 
 

 is orthogonal projection of y on u. 

z=y- ŷ⇒z=[
 2
  1
  1

] −

[
 
 
 
 
9

26
27

26

36

26]
 
 
 
 

=

[
 
 
 
 
43

26
23

26

22

26]
 
 
 
 

⇒z=

[
 
 
 
 
43

26
−1

26

−10

26 ]
 
 
 
 

.We observe that u.z=uT z=[1 3 4] 

[
 
 
 
 
43

26
−1

26

−10

26 ]
 
 
 
 

 =1(
43

26
)+3(

−1

26
)+4(

−10

26
) =

 
43−3−40

26
=0.Hence u. z=0⇒u,z are orthogonal to each other and y=[

 2
  1
  1

]=

[
 
 
 
 
9

26
27

26

36

26]
 
 
 
 

+

[
 
 
 
 
43

26
−1

26

−10

26 ]
 
 
 
 

.  

Hence y is written as sum of two vectors ŷ, z where z is orthogonal to u. 

Here observe that ŷ=

[
 
 
 
 
9

26
27

26

36

26]
 
 
 
 

,y- ŷ =

[
 
 
 
 
43

26
−1

26

−10

26 ]
 
 
 
 

 are orthogonal. 

(15) The Orthogonal Decomposition Theorem 

Theorem: Let W be a subspace of Rn . Then each y in Rn can be written uniquely in the form  

y= ŷ + zwhere ŷ is in W and z is in W⊥. In fact, if {u1, u2 ………. un} is any orthogonal basis of W   

then ŷ=(
𝒚.𝒖𝟏

𝒖𝟏.𝒖𝟏
)𝒖𝟏+ (

𝒚.𝒖𝟐

𝒖𝟐.𝒖𝟐
)𝒖𝟐+ (

𝒚.𝒖𝟑

𝒖𝟑.𝒖𝟑
)𝒖𝟑+………………+(

𝒚.𝒖𝒏

𝒖𝒏.𝒖𝒏
)𝐮𝐧 and z=y- ŷ.( W⊥contains the vectors 

which are orthogonal to every vector of W).Here ŷ is defined as orthogonal proj 

 

(16) Orthonormal column of a matrix:For an m × n matrix, if a column of the matrix is 

orthonormalvector, then we say the column of the matrix as orthonormal column. 

 

Theorem: An m ×n matrix U has orthonormal columns if and only if UTU= I. 

Theorem: Let U be an m×n matrix with orthonormal columns, and let x and y be in Rn . Then 

 a) |Ux||=||x||b) (U x). (U y) =x. y   c) (U x). (U y) =0 if and only if x. y=0 

Note:An orthogonal matrix is a square invertible matrix U such that U-1=UT 
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(17) The Orthogonal Decomposition Theorem 

Theorem: Let W be a subspace of Rn . Then each y in Rn can be written uniquely in the form  

y= ŷ + z where ŷ is in W and z is in W⊥. In fact, if {u1, u2 ………. un} is any orthogonal basis of W   

then ŷ=(
𝑦.𝑢1

𝑢1.𝑢1
)𝑢1+ (

𝑦.𝑢2

𝑢2.𝑢2
)𝑢2+ (

𝑦.𝑢3

𝑢3.𝑢3
)𝑢3+………………+(

𝑦.𝑢𝑛

𝑢𝑛.𝑢𝑛
)un and z=y- ŷ.( W⊥contains the vectors which 

are orthogonal to every vector of W).Here ŷ is defined as orthogonal projection of y on to W. 

(18) The Best Approximation Theorem 

Theorem: Let W be a subspace of Rn , let y be any vector in Rn, and let ŷ be the orthogonal projection of y 

onto W.Then ŷ is the closest point in W to y, in the sense that ||𝐲 − �̂�||< 

||𝐲 − 𝐯||for all v in W distinct from �̂�. 

 

Theorem: If {u1, u2 ………. un} is an orthonormal basis for a subspace W of Rn, then projection of y on to W 

= (y.𝒖𝟏) 𝒖𝟏 +(y.𝒖𝟐) 𝒖𝟐+(y.𝒖𝟑) 𝒖𝟑+………. +(y.𝒖𝒏) 𝒖𝒏.If U= {u1, u2 ………. un} then projection of y on to 

W=U U T y for all y in Rn. 

(19) Gram – Schmidt orthogonalization process 

 

This Process is used to construct orthogonal basis from a given basis of a subspace of a vector  

space. 

Theorem: Given a basisB= {𝒖𝟏,𝒖𝟐,𝒖𝟑, …… . . 𝒖𝒏}for a non-zero subspace W of Rn. 

Define,v1 = u1 

𝒗𝟐=𝒖𝟐-(
𝒖𝟐.𝒗𝟏

𝒗𝟏.𝒗𝟏
) 

𝒗𝟑=𝒖𝟑-(
𝒖𝟑.𝒗𝟏

𝒗𝟏.𝒗𝟏
)𝒗𝟏-(

𝒖𝟑.𝒗𝟐

𝒗𝟐.𝒗𝟐
)𝒗𝟐 

…………………………. 

…………………………. 

…………………………. 

…………………………. 

𝒗𝒏=𝒖𝒏-(
𝒖𝒏.𝒗𝟏

𝒗𝟏.𝒗𝟏
)𝒗𝟏-(

𝒖𝒏.𝒗𝟐

𝒗𝟐.𝒗𝟐
)𝒗𝟐- …….-(

𝒖𝒏.𝒗𝒏−𝟏

𝒗𝟐.𝒗𝒏−𝟏
)𝒗𝒏−𝟏 

then B1= {v1,𝒗𝟐, 𝒗𝟑,……….,𝒗𝒏} is an orthogonal basis of Rn. 

 

 

(20) Orthonormal basis 

 

Definition: A set  𝐵 = {∝𝟏,∝𝟐, ∝𝟑,…………, ∝𝒏} of vectors in Rn is said to be orthonormal basis if 1) 𝐵 =

{∝𝟏,∝𝟐, ∝𝟑,…………, ∝𝒏} is a basis of Rn  2) 𝐵 = {∝𝟏,∝𝟐, ∝𝟑,…………, ∝𝒏}  is orthonormal set in Rn 

Example: If B= {[

1

√ 2

0
−1

√ 2

] ,[
0

0

1

] }then u is an orthonormal basis of R2, because 

     1)B is basis of Rn , 2)Bis an orthonormal set. 
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(∵ The Vectors [

1

√ 2

0
−1

√ 2

] ,[
0

0

1

]are orthogonal and unit vectors) 

(∵ The Vectors[

1

√ 2

0
−1

√ 2

] ,[
0

0

1

]are Linearly independent vectors and [

1

√ 2

0
−1

√ 2

] ,[
0

0

1

] spans R2) 

(21) The QR Factorization Theorem 

Theorem: If A is an m × 𝑛  matrix with linearly independent columns, then A can be factored as A=QR, 

where Q is an m × n matrix whose columns form an orthonormal basis for Col A and R is an n × n upper 

triangular invertible matrix with positive entries on its diagonal. 

Here we find the matrix Q by using Gram – Schmidt orthogonalization process and normalize the columns 

of Q. As the columns of the matrix are orthonormal, QTQ=I. A=QR⇒Q-1A=R 

Hence, we can find R by using R= Q-1A. 

 

MAIN RESULT 

 

(22) Least Square Lines. 

 

In this section we find solution x of the equation Ax=B,where A is an m× 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑥 𝑖𝑠 

𝑛 × 1 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑛𝑑 𝐵 𝑖𝑠 m× 1 𝑚𝑎𝑡𝑟𝑖𝑥. 

   The general least-squares problem is to find an x that makes ||B − A × || as small as     

   possible. 

 

Theorem: The set of least-squares solutions of A×= 𝐵 coincides with the nonempty set of     

    solutions of the normal equations ATA×=ATb. 

 

Theorem: Let A be an m × n matrix. The following statements are logically equivalent 

      a) The equation Ax = B has a unique least-squares solution for each b in Rm.  

      b) The columns of A are linearly independent.  

      c) The matrix A t A is invertible. When these statements are true, the least-squares solution x̂ 

  is   given by x̂=(ATA)-1 AT. B 

 

Theorem: Given an m × n matrix A with linearly independent columns, let A= QR be a QR factorization of 

A. Then, for each B in Rm, the equation Ax =B has a unique least-squares solution, given by  x̂= R-1 QT B. 

 

(23) APPLICATIONS TO LINEAR MODELS 

 

A common task in science and engineering is to analyze and understand relationships among several 

quantities that vary. This section describes a variety of situations in which data are used to build or verify a 

formula that predicts the value of one variable as a function of other variables. In each case, the problem 

will amount to solving a least squares problem.  
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For easy application of the discussion to real problems that you may encounter later in your career, we 

choose notation that is commonly used in the statistical analysis of scientific and engineering data. Instead 

of Ax=B, we write X β= y and refer to X as the design matrix, βas the parameter vector, and y as the 

observation vector. 

 

The simplest relation between two variables x and y is the linear equation y=β0+β1xExperimental data often 

produce points (x1,y1),(x2, y2), (x3, y3) ……… (xn, yn) that, when graphed seem to lie close to a line. We 

want to determine the parameters β0 and β1 that make the line as “close” to the points as possible. The least-

squares line is the line y= β0+ β1 x that minimizes the sum of the squares of the residuals. This line is also 

called a line of regression of y on x, because any errors in the data are assumed to be only in the y-

coordinates. The coefficientsβ0,β1 of the line are called (linear) regression coefficients.  If the data points 

were on the line, the parameters β0,β1and would satisfy the following equations. 

Predicted y-value                    observed y-value 

β0+β1 x1                                                        = y1            

β0 +β1 x2                                                         = y2 

β0 +β1 x3                                                         = y3 

…………………                                                           …… 

…………………                                                           …… 

…………………                                                           …… 

β0 +β1 xn                                                        = yn 

 

we can write this system equations as X β=Y, where X=

[
 
 
 
 
 
 
 
  1     𝑥1
1    𝑥2
1    𝑥3
 1    𝑥4
−     −
−     −
−     −
1     𝑥𝑛 ]

 
 
 
 
 
 
 

,β=[
β
0

β
1

],Y=

[
 
 
 
 
 
 
 
𝑦1
𝑦2
𝑦3
−
−
−
−
𝑦𝑛]

 
 
 
 
 
 
 

 

 

By least square method we can fit the line to the given data points 

 

Example: Let us find the equation y=β0+β1xof the least squares line that best fits the data points (2,1), (5,2), 

(7,3) and (8,3) 

Let y= y=β0+β1x be the least squares line that best fits the data points (2,1), (5,2), (7,3)    

 and (8,3). 

For least squares line,we find the solution β of x β=y. The normal equation is xT x β= xT y 

Here x=[

  1     2  
1    5
1    7
1    8

],y=[

1

2

3

5

] 

  The normal equation isxT x β= xT y 
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   xT x=[
1 1 1  1
2 5  7  8

] [

  1     2  
1    5
1    7
1    8

]=(
4 22

22 142
), xT y=[

1 1 1  1
2 5  7  8

] [

1

2

3

5

]=[
9

57
] 

    xT y=[
1 1 1  1
2 5  7  8

] [

1

2

3

5

]=[
9

57
]. xT x β= xT y⇒(

4 22

22 142
) [

β
𝟎

β
𝟏

]=[
9

57
] 

(
4 22

22 142
) [

β
𝟎

β
𝟏

]=[
9

57
]⇒[

β
𝟎

β
𝟏

] = (
4 22

22 142
)
−1

[
9

57
] =

1

568−484
(
142 −22
−22   4

) [
9

57
] 

     =
1

84
[
278− 1254

−198+ 228
]=

1

84
[
24

30
]⇒[

β
𝟎

β
𝟏

] = [

24

84

30

84

]=[

2

7
5

14

]⇒[
β

𝟎

β
𝟏

]=[

2

7
5

14

] 

Hence β
𝟎
=
2

7
,β

𝟏
=
5

14
.  

    Hence the least square line best fits the data points (2,1), (5,2), (7,3) and (8,3) 

is y=
2

7
+

5

14
𝑥. 

The General Linear Model 

In some applications, it is necessary to fit data points with a curve other than a straight line. In the examples 

that follow, the matrix equation is still X β=y, but the specific form of Xchanges from one problem to the 

next. Statisticians usually introduce a residual vector ε,defined by ε=y-Xβ and write y= Xβ+ε.Any equation 

of this form is referred to as a linear model. Once X and y are determined, the goal is to minimize the length 

of ε, which amounts to finding a least-squares solution of Xβ =y in each case, the least-squares solution B̂ is 

a solution of the normal equations XT Xβ=XTy. 

Least-Squares Fitting of Other Curves 

When data points (x1, y1), (x2, y2), (x3, y3) ……… (xn, yn) on a scatter plot do not lie close to any line, it may 

be appropriate to postulate some other functional relationship between x and y. The next two examples show 

how to fit data by curves that have the general form y=β
0
𝑓0(𝑥) + β

1
𝑓1(𝑥) + β

2
𝑓2(𝑥) + ⋯+ β

𝑛
𝑓𝑛(𝑥),where 

𝑓0, 𝑓1,𝑓2, ……𝑓𝑛are known functions and β
0
, β
1,

β
2,……..

β
𝑛
are parameters that must be determined. As we will 

see, equation y=β
0
𝑓0(𝑥) + β

1
𝑓1(𝑥) + β

2
𝑓2(𝑥) + ⋯+ β

𝑛
𝑓𝑛(𝑥),describes a linear model because it is linear in 

the unknown parameters. For a particular value of x, it gives a predicted, or “fitted,” value of y. The 

difference between the observed value and the predicted value is the residual. The parameters must be 

determined so as to minimize the sum of the squares of the residuals. 

Example: Let the given data points (x1, y1), (x2, y2), (x3, y3) ……… (xn, yn) lie on a parabola other than a 

straight line. Let the x-coordinate denotes the production level for a company denotes the average cost per 

unit of operating at a level of x units per day.Then a typical average cost curve looks like a parabola that 

opens upward. 

Let us approximate the data by an equation of the form y=β
0
+ β

1
𝑥+β

2
𝑥2 + ε1,where ε1 is the residual 

vector which is the difference between observed value and predicted value. 

As y=β
0
+ β

1
𝑥+β

2
𝑥2 + ε1  𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 (x1, y1), (x2, y2), (x3, y3) … (xn, yn),we have 𝑦1=β

0
+

β
1
𝑥1+β

2
𝑥1
2 + ε1  
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𝑦2=β
0
+ β

1
𝑥2+β

2
𝑥2
2 + ε2  

𝑦3=β
0
+ β

1
𝑥3+β

2
𝑥3
2 + ε3  

        …………………………. 

        …………………………. 

        …………………………. 

𝑦𝑛=β
0
+ β

1
𝑥𝑛+β

2
𝑥𝑛

2 + ε𝑛  

We can write the system of equations in the form Y=Xβ+ ε 

Here Y=

[
 
 
 
 
 
 
 𝑦1
𝑦2
𝑦3
−
−
−
 𝑦𝑛]

 
 
 
 
 
 

 , X=  

[
 
 
 
 
 
 
 
 
1 𝑥1    𝑥1

2

1 𝑥2    𝑥2
2

 1  𝑥3    𝑥3
2

−  −  −
−   −    −
−   −      −
1   𝑥𝑛    𝑥𝑛

2

⬚ ]
 
 
 
 
 
 
 
 

,β=[

β
0

β
1

β
2

],ε=

[
 
 
 
 
 
 
 
ε1
ε2
ε3
−
−
−
−
ε𝑛]

 
 
 
 
 
 
 

. 

By using normal equations, minimizing ε we solve the system of equations. 

In order to approximate the  given points (x1, y1), (x2, y2), (x3, y3) ……… (xn, yn) to a cubic equation of the 

form y=β
0
+ β

1
𝑥+β

2
𝑥2 + β

3
𝑥3 + ε1,where ε1 is the residual vector which is the difference between observed 

value and predicted value, we follow the above procedure. 

(24) Some more Applications of Inner Product. 

1)Wecan approximate a line or second degree or …. or an nth degree polynomial of exponential, logarithms 

and trigonometric functions by using the least square method. 

 

2) We can approximate a Fourier function to a continuous function on a closed interval spanned by a non-

empty set with respect to a vector spaceby using the least square method. 
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