
Volume 6 Issue 6 @ Nov Dec 2020 IJIRCT | ISSN: 2454-5988

IJIRCT20062410016 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Load Balancing Using Open Daylight Controller

Kiran Noolvi1, Swetha Nallamalli2, Apoorva Godasu3,

Naga Sai Krishna Mohan Pitchikala4

1,2,3,4Graduate Student, University of Texas at Dallas, Texas, USA

Abstract

In this study, we focused on setting up load balancers and improving load balancing in a network that

uses a Fat Tree design using Open Daylight system. We built the network using tools like Mininet and

Instant Virtual Network (IVN). Open Daylight, which is an open-source controller for software-defined

networks (SDN), was used to manage and control the traffic flow in the network. To test the network,

we created traffic using a tool called IPERF and measured key factors like bandwidth, delay (latency),

and overall network performance. The aim of this research is to study how the traffic flows through

the network, analyze the performance of different ports, and improve how new traffic is scheduled

using Open Daylight’s load balancing features.

Keywords: software defined networks, load balancing, Open Daylight controller

Introduction

As the networks continue to increase in complexity and size, efficient traffic management has become a critical

factor in maintaining network performance and reliability. One promising solution to the network management

is the use of Software-Defined Networking (SDN). In Software Defined Networks the control plane is

separated from the data plane to provide centralized network management. In this study, we utilized a Fat Tree

network topology. Fat Tree topology is a commonly used architecture in data center networks and is known

for its high bandwidth and fault tolerance. The Fat Tree topology is built using Mininet and Instant Virtual

Network (IVN) tools to emulate a realistic network environment.

The core of our study is the Open Daylight controller. It is a popular open-source SDN platform that uses the

OpenFlow protocol for controlling traffic flows. By integrating Mininet with Open Daylight, we can develop

an efficient load balancer that can manage network traffic and improve overall performance. Traffic is

generated using IPERF, which allows us to measure key network parameters such as bandwidth, latency, and

link performance.

In this study we aim to analyze Open Daylight’s load balancing algorithm, monitor network flows based on

port statistics, and further optimize flow scheduling to improve traffic distribution.

Open Sources Used

Fat-Tree Network Topology

For having an efficient network connectivity we have used fat-tree network topology. Fat-Tree network is a

tree structure and hosts are connected to the bottom layer. For any switch, the number of data links going down

to its siblings is equal to the number of links going up to its parent in the upper level. The main goal is to

connect a large number of endpoints (processors or servers) by using switches that only have a limited number

of ports. This would also help us in

• Full Bisection BW: 1:1 Oversubscription ratio

• Low Cost: Commodity switches.

Volume 6 Issue 6 @ Nov Dec 2020 IJIRCT | ISSN: 2454-5988

IJIRCT20062410016 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

• Great Scalability: K-port switch's supports K3/4 servers

• Each port supports same speed as end host.

• All devices can transmit at line speed if packets are distributed uniform along available paths.

Fig-1: Fat Free Network Topology

MININET

Features of Mininet:

• Custom topologies: You can build any kind of network, from a simple one with just one switch to

something as big as the Internet, or even a data center

• Customize packet forwarding: Mininet’s switches can be programmed to control how data moves

through the network using the OpenFlow protocol.

• Can share and replicate results: Once you've set up a network and packaged the code, anyone with a

computer can run the same setup easily

• Can run real programs: Since Mininet works on Linux, you can run actual programs like web servers,

network monitoring tools (like Wireshark), or anything else that runs on Linux.

• Mininet creates a virtual network environment with hosts, switches, routers, and links, all running on a

single Linux machine.

• It's easy to understand, use, and can connect to other network systems like Open Daylight smoothly.

• Unlike simulators, Mininet runs real, unmodified code, whether it's application code, the operating system,

or the network control code, and it can easily connect to actual physical networks.

Limitations of Mininet:

• The virtual networks you create are limited by the CPU and bandwidth available on the single server

you're running Mininet on. So, it might struggle with very large networks.

• Mininet doesn't work with OpenFlow switches that aren't running on a Linux platform

Fig-2: Mininet

Volume 6 Issue 6 @ Nov Dec 2020 IJIRCT | ISSN: 2454-5988

IJIRCT20062410016 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

Open Flow

• OpenFlow is a southbound API that enables software running on multiple routers to control the path of

network packets through a network of switches.

• The fast packet forwarding function is still on the switch, but the high-level routing decisions is moved to

a new controller

• OpenFlow has a message structure called OF messages that are passed between the controller and the

OpenFlow switch. Every switch will have their own Flow Table like the MAC address table and routing

table in the traditional switches. Every new incoming packet is matched against the existing Flow table

on the switch and a necessary action is taken.

Open Daylight

• An open-source project with modular, pluggable and flexible controller platform and implemented strictly

in software which runs in its own Java Virtual Machine.

o It provides

o SDN Controller

o Overlay Virtual Network

o Plugins

o Interfaces

• Yang is the modeling language used in SDN.

• It is used for modelling tree-based data structured messages that help in interacting with RPCs. (Model

Driven – Service Abstraction Layer)

Fig-3: Open Daylight

Fig-4: Design Overview

Volume 6 Issue 6 @ Nov Dec 2020 IJIRCT | ISSN: 2454-5988

IJIRCT20062410016 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

IPERF

IPERF is a commonly used tool that helps test and improve how well a network is performing. It’s important

because it works on different operating systems (like Windows, Linux, etc.) and provides consistent,

standardized results that can be used to measure any type of network.

IPERF works by using two components: a client and a server. The client sends data to the server, and this

exchange allows IPERF to measure how much data can move between the two devices in a given time (this

is called throughput). It can measure data transfer in one direction (client to server) or both directions (client

to server and server to client).

When IPERF runs, it provides a detailed report that shows how much data was transferred, how fast it moved,

and when each part of the test happened (using timestamps). This information is very useful for understanding

the speed and efficiency of a network and can help identify areas where improvements are needed.

Steps Involved

1. Create Mininet Topology

2. Connect it to Controller

3. Execute ‘pingall’ to check reachability of hosts

4. Use Rest API to configure load balancer service

5. Generate traffic using IPERF

Fig-5: Connecting Topology to controller

Fig-6: REST API Configuration

Volume 6 Issue 6 @ Nov Dec 2020 IJIRCT | ISSN: 2454-5988

IJIRCT20062410016 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

Results

Problems faced

1. Issues faced while installing Beryllium open daylight

Beryllium open daylight failed to start with Installation of Java8 using apt install command and setting the

Java path shows as follows:

sudo add-apt-repository ppa:webupd8team/java sudo apt-get update

sudo apt-get install oracle-java8-installer

2. Following is the error displayed while starting Beryllium:

Error: Could not find or load main class project.distribution-karaf-0.4.4-Beryllium- SR4.etc.odl.java.security

To resolve this, download jdk1.8.0_131 from Java webpage and set the java path

Conclusion

We began this project with the goal of developing an efficient load balancer for the Open Daylight controller

in a network using the Fat Tree topology. Throughout the project, we successfully implemented and tested

the load balancer, using OpenFlow to manage traffic switching and control how data flows through the

network.

By analyzing the performance of the load balancer, we were able to monitor the traffic, assess how well the

network handled different loads, and optimize the flow scheduling process. The flows we worked with in this

project were Layer 2 (L2), meaning they involved switches and direct connections between devices.

While the load balancer worked well for L2 traffic, there is room for improvement. A potential future step is

to extend the load balancing capabilities beyond just Layer 2 switches to include routers (Layer 3). This would

allow for more advanced traffic management, covering not just direct device-to-device connections but also

routing across different networks. Overall, the project provided a solid foundation for improving network

performance, with clear opportunities for further development in load balancing across different network

layers.

References

1. https://wiki.p2pfoundation.net/Network_Topology

2. https://clusterdesign.org/fat-trees/

3. https://blogchinmaya.blogspot.com/2017/04/what-is-fat-tree-and-how-to-construct.html

4. https://hackmd.io/@pmanzoni/BklqpKddS

https://wiki.p2pfoundation.net/Network_Topology
https://clusterdesign.org/fat-trees/
https://blogchinmaya.blogspot.com/2017/04/what-is-fat-tree-and-how-to-construct.html
https://hackmd.io/@pmanzoni/BklqpKddS

Volume 6 Issue 6 @ Nov Dec 2020 IJIRCT | ISSN: 2454-5988

IJIRCT20062410016 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

5. https://mininet.org/walkthrough/

6. https://noviflow.com/the-basics-of-sdn-and-the-openflow-network-architecture/

7. https://stackoverflow.com/questions/4527836/flow-based-routing-and-openflow

8. https://networklessons.com/cisco/ccna-routing-switching-icnd2-200-105/introduction-to-sdn-

opendaylight

9. https://medium.com/@blackvvine/sdn-part-2-building-an-sdn-playground-on-the-cloud-using-open-

vswitch-and-opendaylight-a0e2de029ce1

10. https://docs.openstack.org/kolla-ansible/stein/reference/networking/opendaylight.html

11. https://openmaniak.com/iperf.php

12. https://iperf.fr/

https://mininet.org/walkthrough/
https://noviflow.com/the-basics-of-sdn-and-the-openflow-network-architecture/
https://stackoverflow.com/questions/4527836/flow-based-routing-and-openflow
https://networklessons.com/cisco/ccna-routing-switching-icnd2-200-105/introduction-to-sdn-opendaylight
https://networklessons.com/cisco/ccna-routing-switching-icnd2-200-105/introduction-to-sdn-opendaylight
https://medium.com/@blackvvine/sdn-part-2-building-an-sdn-playground-on-the-cloud-using-open-vswitch-and-opendaylight-a0e2de029ce1
https://medium.com/@blackvvine/sdn-part-2-building-an-sdn-playground-on-the-cloud-using-open-vswitch-and-opendaylight-a0e2de029ce1
https://docs.openstack.org/kolla-ansible/stein/reference/networking/opendaylight.html
https://openmaniak.com/iperf.php
https://iperf.fr/

