
Volume 5 Issue 1 @ Jan Feb 2019 IJIRCT | ISSN: 2454-5988

IJIRCT19012410014 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Integration Strategies for Disparate Systems and

the Enduring Resilience of SOA

Gopikrishna Kalpinagarajarao

MS MBA, SOA Architect

kngopi@gmail.com

Abstract

Service-oriented architecture has been an unsung hero regarding integration. This technology,

introduced over a decade ago, remains a highly efficient solution for enterprise integration. It unifies

services that rely on disparate systems under one middleware layer, which is highly efficient and cost-

effective when designed and orchestrated correctly. Despite the changes and evolution of messaging

systems, the fundamental advantage of Service Oriented Architecture as a spine remains the best for

an enterprise. The stability of SOA, irrespective of which company uses it, ensures they weather

constant changes and reduce maintenance costs.

Keywords: SOA, Middleware, JSON, XML, Java, JMS, Fault policy

INTRODUCTION

Service-oriented architecture (SOA) is a software development approach that builds applications by

combining reusable software components called services. Each Service encapsulates a specific business

function and can communicate with others across different systems and programming languages. This

modular design promotes efficiency, flexibility, and scalability by allowing developers to reuse services in

various projects and create complex applications by combining multiple services. Many business processes

within an organization require user authentication. Instead of duplicating the authentication code for each

process, you can develop a single authentication service that can be reused across all applications. Similarly,

various systems like patient management and electronic health records (EHR) need to register patients in a

healthcare organization. These systems can utilize a standard service to handle patient registration efficiently.

SOA: THE ARCHITECTURE

The enterprise architect plays a pivotal role in building and designing a company's overall architecture. SOA,

a specific construction technique, can be effectively used to build enterprise IT, and its impact on the overall

architecture is significant. It can be viewed as part of a continuum that spans from the older concept of

distributed computing and modular programming through SOA to the practices of SaaS and cloud computing.

These technologies have drawn inspiration from the architectural designs and patterns of SOA.

Volume 5 Issue 1 @ Jan Feb 2019 IJIRCT | ISSN: 2454-5988

IJIRCT19012410014 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

Figure 1. SOA Architecture for a web application

SOA: ADVANTAGES

Service-oriented architecture (SOA) is designed with a multitude of advantages that have sustained its

relevance over time. It encompasses a set of design principles that structure system development and provide

means for integrating components into a coherent and decentralized system. These advantages include

interoperability, reusability, abstraction, granularity, and quality of Service.

Interoperability

SOA can communicate with every available protocol and is completely platform independent. An entity using

Microsoft can be integrated with a completely different entity, such as Oracle. This vastly reduces the

challenges faced with compatibility and data formats. Some of the most common protocols used are

• Simple Object Access Protocol (SOAP)

• JSON

• RESTful HTTP

• Apache Thrift

• Apache ActiveMQ

• Java Message Service (JMS)

Loose coupling

Loose coupling is to have as little dependency as possible on external resources such as data models or

information systems. The integrations in SOA are also stateless without retaining any information from past

sessions or transactions. This way, any modification to upstream data or data model will not significantly

impact the client applications and other services consuming the Service. The integration components can be

removed and updated easily without impacting the orchestration. For example, if a database firmware is

Volume 5 Issue 1 @ Jan Feb 2019 IJIRCT | ISSN: 2454-5988

IJIRCT19012410014 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

changed for one of the components in the background. The changes to that database will not impact the flow

of data and can be customized with ease.

Reusability

The reutilization of services significantly bolsters organizational agility by facilitating the swift development

of novel business processes derived from pre-existing components, thereby permitting entities to respond to

the dynamic nature of market requirements adeptly. Furthermore, it contributes to reducing expenses by

obviating the need for duplicate code creation and optimizing the deployment and management workflows.

The practice of service reuse also diminishes potential risks and guarantees the dependability of solutions.

Abstraction

Service users in SOA do not need to know the service's code logic or implementation details. To them, services

should appear like a black box. Clients get the required information about what the Service does and how to

use it through service contracts and other service description documents. This is a phenomenal advantage to

a service provider where the data can be tailored to suit what a specific request needs. Abstraction also helps

in safeguarding data in highly regulated fields like healthcare.

Granularity

Services in SOA have an appropriate size and scope, ideally packing one discrete business function per

Service. Developers can then use multiple services to create a composite service for performing complex

operations.

Quality of Service

SOA provides location transparency with better scalability and availability. Facilitates Quality of Services

through service contract based on Service Level Agreement (SLA).

This improves ease of maintenance with reduced cost of application development and deployment.

Integration Strategies for Resiliency

Resilient systems demonstrate several key characteristics that enable them to withstand and recover from

failures while maintaining functionality and performance. The most crucial reason that SOA sustains lies in

how well the system is designed. Most SOA vendors provide these features out of the box, and architects

design resilient architecture that can be sustained for a long time. The factors that make SOA resilient and

sustainable are as follows:

Fault Tolerance

SOA-based integration systems are designed to tolerate faults and failures without experiencing catastrophic

or disastrous consequences. They incorporate redundancy, error-handling mechanisms, and failover strategies

to ensure continued operation despite individual component failures.

Failure Recovery

SOA-based integration systems have robust mechanisms for detecting, isolating, and recovering from failures

in a timely manner. These systems employ automated processes, such as self-healing algorithms or recovery

procedures, to restore system functionality and minimize downtime. The design must incorporate these to

ensure the recovery process is utilized to its full potential. The design of recovery is equally important when

building a resilient system.

Volume 5 Issue 1 @ Jan Feb 2019 IJIRCT | ISSN: 2454-5988

IJIRCT19012410014 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

Redundancy

SOA-based integrations incorporate redundancy at various levels, including hardware, software, and data.

Redundant components, services, or data replicas are deployed to mitigate the impact of failures and ensure

uninterrupted service delivery.

Scalability and Elasticity

SOA architectures can be designed to scale resources dynamically in response to changing demand or

workload patterns. These can be designed to allocate additional resources or adjust capacity levels to

accommodate fluctuations in traffic and maintain optimal performance. This methodology is one of the key

fundamental ideas behind SaaS and cloud computing.

Resilient Communication

SOA architectural systems safeguard reliable communication between components, services, or nodes in the

event of network failures and other disruptions. These can be designed to implement resilient communication

protocols, retry strategies, and fallback mechanisms to ensure message delivery and fault tolerance.

CONCLUSION

To conclude, Oracle SOA is a comprehensive design architecture that allows enterprises to build integrations

that last long and can be classified as highly resilient. The fact that SOA and middleware layer has survived

ever since its inception indicates that the fundamental design and the foundations of middleware are robust.

Oracle, IBM, SAP, MuleSoft, etc., have been a few companies that have used service-oriented architecture as

a platform to develop middleware applications and integrations across disparate systems. As of today, there

are AI-based cloud-based systems that are slowly emerging and potentially replacing many applications;

however, because of the strong foundation and the middleware layer that currently exists and enhanced by

SOA, it continues to be the most resilient architecture that will continue to remain a strong contender and not

easily replaceable by newer technologies.

References

1. "Test Strategies for SOA (Service Oriented Architecture) applications," BrowserStack.

https://www.browserstack.com/g uide/test-strategies-for-soa-applications

2. C. Legner and R. Heutschi, "Association for Information Systems AIS Electronic Library (AISeL) SOA

Adoption in Practice -Findings from Early SOA Implementations Recommended Citation," 2007.

[Online]. Available: https://aisel.aisn et.org/cgi/viewcontent.cgi?article=1154&context=ecis2007

3. M. P. Papazoglou and J. Yang, "Design Methodology for Web Services and Business Processes,"

Technologies for E-Services, no. 2002, pp. 54–64, 2002, doi: https://doi.org/10.1 007/3-540-46121-3_8.

4. D. Stock, R. Winter, and J. H. Mayer, "Functional Service Domain Architecture Management: Building

the Foundation for Situational Method Engineering," IFIP advances in in- formation and communication

technology, pp. 245–262, Jan. 2010, doi: https://doi.org/10.1007/978-3-642-12113-5_15.

