
Volume 8 Issue 6 @ Nov Dec 2022 IJIRCT | ISSN: 2454-5988

IJIRCT22062410006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1

Implementing Infrastructure as Code (IaC) in

Data Engineering: Benefits and Challenges

Satyadeepak Bollineni

Sr. DevOps Engineer, Databricks, Texas, USA

Abstract

Infrastructure as Code has revolutionized how infrastructure operates and is automated, especially in

environments such as cloud and DevOps. Infrastructure as Code finds its critical role in data

engineering: a means of automating the setup of data pipelines, storage systems, and processing

frameworks. This paper discusses a few benefits and some challenges that come with using IaC in data

engineering environments. First, the key advantages are automation, scalability, cost-effectiveness,

speedier deployment, and enhanced collaboration. Challenges include, but are not limited to,

complexity, the learning curve, security concerns, and state management. IaC popular tools presented

include Terraform, AWS CloudFormation, and Ansible; best practices to be used in the face of

obstacles include modular design and Continuous Integration. The case studies represent real-world

application of the IaC practice and provide at least some insight into the development trends yet to

come, such as integration with Artificial Intelligence/Machine Learning and Edge computing. Finally,

practical recommendations are given that may support data engineers who would like to take

advantage of Infrastructure as Code and operate more efficient, scalable infrastructure.

Keywords: Infrastructure as Code, data engineering, automation, scalability, devops, cloud.

1. INTRODUCTION

Infrastructure as Code, abbreviated as IaC, has become a really revolutionary methodology toward automation

in infrastructure management, especially over the cloud and DevOps environments. IaC manages the

infrastructure by coding rather than manual processes. This allows consistency, speed, and reliability in

deploying the systems. The next point is that agility, combined with scalability, goes hand in glove with

meeting the demands imposed by modern software development in today's fast-moving technological

ecosystem. In data engineering, IaC is essential in ensuring that the creation and maintenance of data pipelines,

storage solutions, and processing frameworks are automated. With the application of IaC, one may build

consistent, reproducible, and scalable environments, translating into effective and efficient ways of processing

and analyzing data.

The impact of IaC in data engineering is enormous, mainly since the infrastructure of data engineering is

growing increasingly complex. Usually, a data engineer deals with large amounts of data that need advanced

systems for data ingestion, processing, storing, and analysis. Their traditional ways of configuring

infrastructure are prolonged and prone to errors; such errors result in inconsistencies across environments.

IaC avoids this problem by allowing the engineer to define the infrastructure in code that can be versioned,

tested, and executed with precision. This paper discusses the advantages and challenges of implementing

Infrastructure as Code in the data engineering domain. This shall light up how this approach can streamline

processes and what obstacles might arise in the implementation.

Volume 8 Issue 6 @ Nov Dec 2022 IJIRCT | ISSN: 2454-5988

IJIRCT22062410006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 2

2. OVERVIEW OF INFRASTRUCTURE AS CODE (IAC)

Infrastructure as Code began in the early 2000s; it picked up when cloud computing hit the market. Further

development of IaC was dictated by demands for speed, reliability, and scalability concerning infrastructure

management. Initially, an IT infrastructure had to be provisioned by hand, and it took weeks, if not months,

to set up servers, databases, and many other critical parts. This process achieved automation with the arrival

of IaC, and now infrastructure resources can be provided instantly.

The most common IaC tools in data engineering include Terraform, AWS CloudFormation, and Ansible. It

targets the automation effect on mostly complicated data systems deployments such that scaling up and

infrastructure maintenance will have minimal human intervention. Terraform, for example, allows engineers

to maintain infrastructure as code and provision it in any cloud. Similarly, AWS CloudFormation extends

such capabilities by enabling the creation of AWS resources to be consistently maintained and automated.

Ansible is known to be relatively simplistic and, hence, has found widespread use in configuration

management and application deployment procedures within a data engineering context. There is increased

usage of declarative and idempotent configurations. Declarative IaC allows engineers to define what they

want their infrastructure to look like but remain entirely immune from the steps involved in arriving at that

state. On the other hand, idempotency offers assurance that running the same configuration more than once

yields the same result, besides further cementing the credibility of IaC to manage complex data infrastructure.

This has especially been the case in data engineering, with increasing demands for reproducibility and

scalability.

CloudFormation is a closed source for AWS only, with provisioning being the focus of this file and immutable

and declarative as an approach. Terraform is open source, supports all clouds, and does the same thing but

with an unchangeable, declarative provisioning model. Ansible, Chef, Puppet, and SaltStack are, in contrast,

focused on configuration management rather than on provisioning and rely on mutable infrastructure: some

adopt a procedural approach, such as Ansible and Chef- others adopt a declarative one, such as Puppet and

SaltStack [1].

Automated deployment of environments for data processing decreases the time and effort spent setting up

infrastructure and ensures consistency at various levels of development, testing, and production. [1]. That

becomes important in data engineering, as inconsistencies in the infrastructure may further lead to errors in

data processing or analysis. With code infrastructure definitions, engineers can achieve consistency across

environments by propagating the same configurations and reducing the chances of mistakes for a more reliable

system.

The other significant benefit of IaC in data engineering is scalability. As the volume and complexity of the

data continue to increase, scalable infrastructure that has the potential to handle big datasets and high-

performance computing will keep on being in demand. [1]. IaC automatically scales infrastructure based on

predefined parameters, enabling data engineers to scale up or down with minimal effort quickly. The ability

to scale is essential in data engineering environments due to large swings in potential workloads, depending

on either the dataset size or the complexity of the analysis.

Another significant advantage of IaC is that it is cost-efficient. It reduces the operations costs since most tasks,

if done without IaC, require manual interference. Secondly, IaC facilitates the proper utilization of resources

where only the needed infrastructure is provisioned and utilized. This minimizes the chances of over-

provisioning, leading to wasted resources.

Another critical advantage is the much faster deployment of data pipelines. Data pipelines become the

lifeblood of data engineering-data has to be ingested, processed and made ready for storage in large volumes.

Using IaC for such deployment of these pipelines automatically means data engineers can reduce the time

taken to set up and maintain such systems by a good margin. This again ensures quicker time-to-insight

because the data that needs to be processed can be analyzed much quicker.

Volume 8 Issue 6 @ Nov Dec 2022 IJIRCT | ISSN: 2454-5988

IJIRCT22062410006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 3

Another advantage that comes with implementing IaC is improved collaboration. Using version control

systems such as Git, data engineers can track changes in their infrastructure configurations and thus help

teams collaborate when managing infrastructure. This is quite important in big data engineering teams where

multiple engineers may take responsibility for different levels of the infrastructure. Version control allows for

better collaboration and eliminates most conflicts or errors that can be introduced by manually updating the

infrastructure. Lastly, IaC improves disaster recovery and fault tolerance in data engineering environments.

Automation of infrastructure provisioning and configuration ensures that restoration will be done in case of

any failure of environments. This is even more important in data engineering since downtime means

considerable loss or delay in processing data. IaC allows the creation of automated backups and disaster

recovery plans to restore data processing environments in record time efficiently.

Figure 1: Critical attributes of the infrastructure as Code [2]

The above bar chart highlights many critical attributes of the Infrastructure as Code. Consistency - Rated nine

is of utmost importance because it helps ensure that repeated infrastructure deployments are uniform.

Immutability - Rated seven states that one must have unchangeable configuration settings for infrastructure

setups. Programmability and Reproducibility take moderate scores of 5 each, reflecting their importance in

making infrastructures customizable and easily reproducible. Audibility and Virtualization scored 4 and 3,

respectively, to show their lesser but still essential roles in the traceability and abstraction of the resources in

an IaC environment. The chart indicates that practices involving consistency and immutability are central to

IaC. [2].

Challenges of the Adoption of IaC in Data Engineering

However, with all the advantages of IaC, it has substantial challenges in data engineering. The other main

challenge is the complexity of the management of large infrastructures. Most data engineering environments

are composed of several services and dependencies, making the infrastructure management job unwieldy. IaC

can help modulate the process, but it needs to be carefully planned and designed to ensure all infrastructure

components.

Another layer of complexity in the learning curve and the requirements of IaC tools like Terraform and AWS

CloudFormation require a specific knowledge base and skill set. Data engineers should be proficient in these

tools and understand how to integrate them with cloud platforms and other services. This is one of the barriers

to entry within teams new to IaC since a severe investment is needed in training and education.

Other challenges with IaC implementation involve security. While IaC might make infrastructure more secure

by enforcing some standards in configurations and access controls, it can be pretty insecure when not managed

appropriately. In this case, misconfiguration of the IaC scripts leads to insecure infrastructure, which may

Volume 8 Issue 6 @ Nov Dec 2022 IJIRCT | ISSN: 2454-5988

IJIRCT22062410006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 4

expose sensitive data to unauthorized access. This consequently calls on the data engineer to ensure that such

configuration carried out about IaC is secure; therefore, best practices revolving around access control,

encryption, and monitoring should be followed to the latter.

Other challenges with IaC include state management and drift detection. Most IaC tools will maintain the

state of your infrastructure, enabling it to keep track of the current configuration against a targeted one in real-

time. In fact, over time, this actual state of the infrastructure may be very different from what you have targeted

due to many reasons, such as manual changes or changes because of external forces. Drift detection and

correction are complicated in large and complex data engineering settings. Serious challenges also involve

tool integration and compatibility. Data engineering environments often use different tools and services, many

of which are not always fully compatible with IaC utilities. This can make the integration of IaC into existing

workflows difficult and perhaps require bespoke solutions/workarounds to achieve the desired level of

automation. [2].

Figure 2: Critical attributes of the infrastructure as Code [3]

Cloud deployment through IaC brings several advantages and challenges similar to those seen during the

beginning of adoptions, as shown in the above diagram. The most important single factor is a lack of expertise:

knowing how to implement IaC is an essential and niche skill, comparable to 2016 when 32% of surveyors

named a skills gap. Of course, security is a concern again, as misconfigurations in IaC scripts open up

vulnerabilities; this would involve ongoing worries about cloud security [3]. Besides this, other challenges in

an IaC environment pertain to managing multiple cloud services, controlling the costs automation can lead to

overprovisioning if not optimized-and making sure governance and compliance occur within automated

infrastructure setups, echoing concerns within managing cloud in previous years. [3]. Regardless, IaC remains

unavoidable for effective and scalable cloud deployments.

Volume 8 Issue 6 @ Nov Dec 2022 IJIRCT | ISSN: 2454-5988

IJIRCT22062410006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 5

3. CASE STUDIES AND PRACTICAL EXAMPLES

Figure 3: Critical attributes of the infrastructure as Code [4]

In the image shown above of Terraform, the primary building block to optimize infrastructure is Terraform

Service in vRA. This service works well with several components: Shared State for maintaining consistent

deployments and Day 2 operations; and Hybrid TF-vRA Blueprints, which combine Terraform configuration

with resource types in vRA to achieve great flexibility [4]. Other vital components include Provisioning

Policy, which enforces governance related to approval, cost, and resource management; Collaboration and

Pipelines, which enable seamless workflows with Git integration; Self-Service Catalog, which allows users

to deploy their configurations independently; and Event-Based Extensibility, which triggers actions when

some life cycle events occur. This architecture shows how Terraform, in conjunction with vRA, automates

and extends cloud infrastructure management, ensuring operational control in addition to fast deployment.

Another use case study involves AWS CloudFormation in a real-time data processing environment. The task

was for a financial services company: growing infrastructure to process higher volumes of real-time data [4].

The company used AWS CloudFormation to automate the deployment of a data processing environment

because, if necessary, it would scale up the infrastructure so business demands could be quickly met. One of

the significant improvements realized by the application of CloudFormation was that it further enhanced

disaster recovery for the company through prompt restoration of its infrastructure in case any failure happened.

Best Practices to Implement IaC in Data Engineering

Various best practices can be applied to overcome these challenges in implementing IaC within data

engineering. First, there is a need for modular infrastructure design; this translates to breaking down

infrastructures into manageable pieces so that data engineers reduce complexity and ensure that each

component is managed as it should be [5]. Scaling up is also less troublesome when at least one or more

components within the infrastructure need upgrading. Other important things to be considered in any IaC

implementation are version control and continuous integration. In using version control systems like Git, for

example, data engineers can track changes to their infrastructure configurations and ensure they are well-

tested before being applied [6]. Continuous Integration tools automate testing and deployment of changes to

the infrastructure and reduce manually-induced errors that crop up along the way, otherwise called keeping

the infrastructure in a consistent state.

On the other hand, IaC should also implement security best practices. For example, access controls, encryption

Volume 8 Issue 6 @ Nov Dec 2022 IJIRCT | ISSN: 2454-5988

IJIRCT22062410006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 6

of sensitive data, and periodic auditing of IaC configurations are used to ascertain whether security best

practices are in place [7]. In addition, monitoring and state management exist, making it easier for the data

engineer to identify and correct configuration drifts quickly and ensuring infrastructure is always in the desired

state.

4. FUTURE DIRECTIONS AND RESEARCH GOING FORWARD

Integrating AI and machine learning into IaC opens exciting opportunities for further optimization of

infrastructure management. AI/ML can help automate scaling and resource allocation decision-making

processes, driving greater data engineering system efficiencies. Meanwhile, edge computing and the IoT will

continue to drive innovation in IaC as managing distributed infrastructure across thousands of devices

becomes common.[8].

Figure 4: Critical attributes of the infrastructure as Code [4]

The pictorial has identified the eight key DevOps trends for quick infrastructure development and deployment.

Among the leading trends are Microservices (MS), which encapsulates small functionalities to enable fast

delivery of applications, and DevSecOps, which emphasizes security as a cultural shift in development. Other

leading trends are Booming DataOps, which focuses on agile methodologies in optimizing data products, and

Infrastructure Automation (IA), which brings in the capability of DevOps teams to handle multi-cloud and

hybrid infrastructures. [9] Service Mesh Rise brings observability and reliability, especially for Kubernetes

applications. GitOps for Automation provides a workflow template that manages cloud infrastructures, while

Continuous Configuration Automation (CCA) automates the configuration of physical and virtual data

centers. Infrastructure as Code (IaC) uses descriptive coding to automate infrastructure provisioning.

Collectively, these drive faster, more reliable, and scalable infrastructure development and deployment in

state-of-the-art practices in DevOps [10].

5. CONCLUSION

In conclusion, Infrastructure as Code provides enormous benefits, including automation, scalability, cost

efficiency, and better collaboration in data engineering. Some of the challenges presented by using it include

complex maintenance of infrastructures of large sizes, learning curves presented with IaC tooling, and

Volume 8 Issue 6 @ Nov Dec 2022 IJIRCT | ISSN: 2454-5988

IJIRCT22062410006 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 7

security. The best practices to be followed by data engineers, such as modular design, version control, and

continuous integration, will rule out these problems and allow the total value of IaC to come into play. As the

field continues to evolve, deeper integrations of AI/ML, further growth in edge computing, and the thousands

of devices on IoT promise to shape the future of IaC in data engineering.

6. REFERENCES

1. 8 DevOps Trends Disrupting Application Infrastructure Landscape - Techment. pp. 45–50, 2021.

2. Amin, B. Why you should consider using Cloudformation for all AWS deployments. Pp. 5-25, 2016,.

3. Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., & Tamburri, D. A DevOps: Introducing

Infrastructure-as-Code. . 2017, May 1.

4. Bada, M., & Nurse, J. R. C. (2019). Developing cybersecurity education and awareness programs for

small- and medium-sized enterprises (SMEs). Information and Computer Security, 27(3), 393–410.

5. Dineva, K., & Atanasova, T. (2021). Design of Scalable IoT Architecture Based on AWS for Smart

Livestock. Animals, 11(9), 2697.

6. Fedak, V. (2019, October 7). Infrastructure as Code DevOps principle: meaning, benefits, use cases.

Medium.

7. Hernandez, F. (2020, September). Terraform Service in vRA (Cloud Templates). VMware Cloud

Management.

8. Jha, P., & Khan, R. (2018). A Review Paper on DevOps: Beginning and More To Know. International

Journal of Computer Applications, 180(48), 16–20.

9. Kolisetty, satvika. (2020, October 11). A Case Study On Amazon Web Services. Medium.

10. Kumara, I., Garriga, M., Romeu, A. U., Di Nucci, D., Palomba, F., Tamburri, D. A., & van den Heuvel,

W.-J. (2021). The do's and don'ts of infrastructure code: A systematic gray literature review. Information

and Software Technology, 137, 106593.

11. Rout, D. (2018, October 20). A Data Engineer's perspective on IaC - Deepak Rout - Medium. Medium;

12. Shravan Kumar B. (2020, January 5). "Version Control System": Get a Bit "Git" Culture! ! ! Medium;

