
Volume 9 Issue 4                                                       @ 2023 IJIRCT | ISSN: 2454-5988 

 

IJIRCT2404068 International Journal of Innovative Research and Creative Technology (www.ijirct.org) 1 

 

Study On the Application And Principles of 

Functional Analysis 
 

Jagtap Gaytri Sadashiv 
 

Anandrao Dhonde Alias Babaji Mahavidyalaya  

Kada, Dist. Beed M.S. 414202 INDIA. 

 

Abstract- 

Functional analysis is a branch of mathematics that focuses on the study of vector spaces and 

functions that exist within those spaces. The primary objective of this field is to get a knowledge of the 

characteristics and way these functions behave. Applications of this topic may be found in a broad 

variety of fields, including mathematics, physics, engineering, and computer science. The purpose of 

this abstract is to investigate the many applications of functional analysis in a variety of fields, 

focusing on the role that it plays in resolving issues that occur in the real world and improving 

scientific knowledge. When it comes to quantum physics, where systems often display behaviour that 

is infinite-dimensional, functional analysis is a very important technique since it gives strong tools for 

investigating spaces that have an unlimited number of dimensions. In the field of quantum mechanics, 

the theory of operators and Hilbert spaces plays an essential part, since it makes it easier to formulate 

and analyse quantum states and observables. 

 

1. INTRODUCTION 

1.1 NORMED AND BANACH SPACES 

1.1 Vector spaces  

Here, we will review the definition of a vector space that was presented before. In a general sense, it is a 

collection of items that are referred to as "vectors." The addition of any two vectors may produce a new 

vector, and any vector can be multiplied by an element from R (or C, depending on whether we are 

considering a real or complex vector space) to produce a new vector. Both operations can be performed to 

produce a new vector. In the following, the exact definition is provided. 

Definition. Let K = R or C (or more generally1 a field). A vector space over K, is a set X together with two 

functions, + : X × X → X, called vector addition, and · : K × X → X, called scalar multiplication that satisfy 

the following: 

V1. For all x1, x2, x3 ∈  X, x1 +  (x2  + x3) =  (x1  + x2)  +  x3. 

V2. There exists a component, which is indicated by the number 0 and is referred to as the zero  

vector, in which for allx ∈  X, x +  0 =  0 +  x =  x. 

V3. For every x ∈  X, there exists an element, denoted by −x, such that 

 x + (−x)  =  (−x) + x =  0. 
V4. For all x1, x2 ∈  X, x1 +  x2 =  x2 + x1. 

V5. For all x ∈  X, 1 ·  x =  x. 
V6. For all x ∈  X and all α, β ∈  K, α · (β · x)  =  (αβ) ·  x. 

V7. For all x ∈  X and all α, β ∈  K, (α +  β) ·  x =  α · x +  β · x. 

V8. For allx1, x2 ∈  X and all α ∈  K, α · (x1  + x2)  =  α · x1  +  α · x2. 

Examples. 

1. R is a vector space over R, and the addition of vectors is the same as the addition of real numbers, 

while the multiplication of real numbers is the same as the multiplication of scalars.  

 

2. The following is a definition of addition and scalar multiplication in the vector space Rn, which is a 

vector space over R:  
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                    If [

x1

⋮
xn

] , [

y1

⋮
yn

] ∈ ℝn ,  then  α ⋅ [

x1

⋮
xn

] =   [

αx1

⋮
αxn

] 

3. The sequence space ℓ∞ is given. The idea of a vector space is remarkably comprehensive, as shown 

by this example and the one that follows it. This is the initial impression that is given. 

The vector space of all bounded sequences with values in K is denoted by the symbol ℓ∞. The vector space 

is associated with addition and scalar multiplication, which are defined as follows: 
(xn)n∈ℕ + (yn)n∈ℕ = (xn + yn)n∈ℕ  , (xn)n∈ℕ  , (yn)n∈ℕ  ∈ ℓ∞;  

α(xn)n∈ℕ = (αxn)n∈ℕ  , α ∈ 𝕂  , (xn)n∈ℕ  ∈ ℓ∞;  
 

 

4. The function space C[a, b]. Let a, b ∈  Rand a <  b. Consider the vector space comprising functions 

f ∶  [a, b]  →  K that are continuous on [a, b], with addition and scalar multiplication defined as follows.  

If f, g ∈  C[a, b], α ∈  K then f +  g ∈  C[a, b], αf ∈  C[a, b] are the functions given by 

(f +  g)(x) = f(x) + g(x), x ∈  [a, b] 
(αf)(x) = αf(x) , x ∈  [a, b] 

C[a, b]is referred to as a ‘function space’, since each vector in C[a, b] is a function  

(C: [a, b]  →  K). 

1.2 Normed spaces  

In order to perform "calculus" in vector spaces, which means to discuss limiting processes, convergence, 

approximation, and continuity, we need a concept of "distance" or "closeness" between the vectors that 

make up the vector space. The concept of a norm is used to offer this information. 

Definitions. Let X be a vector space over R or C. A norm on X is a function k· k : X → [0, +∞) such that: 

N1. (Positive definiteness) For all x ∈  X, ‖x‖  ≥  0. If x ∈  X, then ‖x‖= 0 iff x =  0. 

N2. For all α ∈ R (respectively C) and for all x ∈  X, ‖αx‖  =  |α|‖x‖. 

N3. (Triangle inequality) For all x, y ∈  X, ‖x +  y‖  ≤  ‖x‖  +  ‖y‖. 

A normed space is a vector space X equipped with a norm. 

If x, y ∈  X, then the number ‖x –  y‖ provides a notion of closeness of points x and y in X, that is, a 

‘distance’ between them. Thus kxk =  kx −  0k is the distance of x from the zero vector in X.We will now 

provide a few instances of spaces that are normed. 

1.3 Banach spaces: A Banach space is a complete normed space (X, ‖⋅‖). A normed space is a order pair 

(X, ‖⋅‖) consisting of a vector space X over a scalar field 𝕂( where𝕂 is commonly ℝ or ℂ ) together with a 

distinguished norm ‖⋅‖: X ⟶ ℝ.  

The  norm‖⋅‖ of a normed space (X, ‖⋅‖) is called a complete norm if (X, ‖⋅‖) is a Banach space.   

                                          

2. FUNDAMENTAL THEOREMS OF FUNCTIONAL ANALYSIS 

(Baire’s theorem, the open mapping theorem and the closed graph theorem) 

2.1 Baire’s theorem 

Statement: Let X be a complete metric space If{Gn}n≥1  is a sequence of dense and open subsets of X, 

thenA = ⋂ Gn
∞
n=1   is also dense. 

Proof. A is dense in X if and only if A̅ = X, that is, for all x ∈ X and all r > 0, B(x, r) ∩ A ≠ ∅. This is 

equivalent to prove thatA ∩ G ≠ ∅ for every nonempty open set G in X. 

SinceG1 is dense and open,G1 ∩ G is a nonempty open set. Therefore, there exista1 ∈ G1 ∩ G and r1 > 0 so 

thatB(a1, r1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊂ G1 ∩ G.Similarly, G2is dense and open, so there exista2 ∈ G2 ∩ B(a1, r1) and 0 < r2 <
r1

2
  

so thatB(a2, r2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊂ G2 ∩ B(a1, r1).  By induction, we can build the sequences{an}n≥1 ⊂ X and {rn}n≥1 ⊂ ℝ+ 

with0 < rn+1 <
rn

2
=

r1

2n  and B(an+1 , rn+1 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊂ Gn+1 ∩ B(an, rn). 

Besides, {an}n≥1 is a Cauchy sequence in X. Indeed, given n, m ∈  Nwith m <  n, then an ∈ B(am, rm)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

andd(an, am) ≤ rm <
r1

2m−1 → 0  as n, m →  ∞. Since X is complete, there exists a = lim
n→∞

anin X. 

Finally, it is readily shown that a ∈  A ∩  G, that is, a ∈  G ∩ Gm for all m ∈  N. 
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Indeed, an ∈ B(am, rm)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ whenever n ≥  m, together with a = lim
n→∞

animplies that an ∈ B(am, rm
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊂ Gm for 

all m ∈  N. Besides, a ∈ B(a, r1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊂ G and, hence, A ∩  G ≠ ∅. 

Corollary 2.1.1. Let X = ⋃ Fn
∞
n=1 , Fn be a complete metric space and {Fn, n ∈  N} a sequence of closed 

sets in X. Then, there is one Fn with nonempty interior. 

Proof. SinceX = ⋃ Fn
∞
n=1 , ∅ = Xc = ⋂ Fn

c∞
n=1   where the setsFn

c   are open.  

Baire’s theorem states that there is at least oneFn
cnot dense.  

Thus, Fn
c̅̅ ̅ ≠ X and consequently, 

X

Fn
c̅̅ ̅̅ = int(Fn) ≠ ∅ . 

2.2 The open mapping theorem 

Definition 2.2.1. A linear operator T ∶  E →  F is said to be open if T(G) is an open set in F for any open set 

G in E. 

Theorem 2.2.2 (Open mapping theorem). Let E, F be two Banach spaces and T ∶  E →  F a linear operator 

that is surjective and continuous. Then, T is a mapping that is open. 

Proof. We want to prove that T(G) is an open set in F for any open set G in E. 

1. It is enough to prove that T(B(0, r)) is a neighbourhood of zero in F for all r >  0. Let G ⊂  E be an 

open set. Since T is surjective, we consider T a ∈  T(G) with a ∈  G. Since G is open, there is r >  0 so that 

B(a, r)  =  a +  B(0, r)  ⊂  G. By linearity, T(B(a, r))  =  T a +  T(B(0, r))  ⊂  T(G). The hypothesis 

assures that T(B(0, r)) is a neighbourhood of zero, so T(B(a, r)) is a neighbourhood of Tain F. Hence, T(G) 

is open. 

2. For allr > 0, T(B(0, r))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is a neighbourhood of zero in F, that is, there is σ >  0 so that B(0, σ) ⊂

T(B(0, r))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Consider the following expressions, 

E = ⋃ B (0,
nr

2
)∞

n=1 andF = T(E) = T (⋃ B (0,
nr

2
)∞

n=1 ) = ⋃ T (B (0,
nr

2
))∞

n=1  

Note thatF ⊂ ⋃ T (B (0,
nr

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
∞
n=1 ⊆ ⋃ T (B (0,

nr

2
))∞

n=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= F̅ = F. 

HenceF = ⋃ T (B (0,
nr

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
∞
n=1  

By Corollary 2.1.1, there is N ∈  N such thatnt (T (B (0,
nr

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) ≠ ∅. 

We can assume N =  1 becauseT (B (0,
Nr

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= N ⋅ T (B (0,

r

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
≅ T (B (0,

r

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
. 

Hence, there exist y ∈  F and σ >  0 so thatB(y, σ) = y + B(0, σ) ⊆ T(B(0, r/2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Besides, there exists a sequence{xn}n ⊂ B (0,
r

2
)such that, 

y = lim
n

Txnand−y = lim
n

T(−xn). Therefore,−y ∈ T (B (0,
r

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
.  

Finally, we have that 

B(0, σ) ⊆ −y + T (B (0,
r

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
⊆ T (B (0,

r

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ T (B (0,

r

2
))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
⊆ T(B(0, r))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

3. Fixed s >  0, T(B(0, s)) is a neighbourhood of zero in F. 

We writes = ∑ rn
∞
n=1   with rn >  0 (obviously, rn  →  0 as n →  ∞). According to the second step of this 

proof, for all n ≥  1 there exists σn >  0 such thatB(0, σn) ⊂ T(B(0, rn))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  We can assume that σn  →  0. 

Let y ∈ (0, σ1) ⊂ T(B(0, r1))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Since T is surjective, there exists x1 ∈  B(0, r1) so that‖y − Tx1‖F < σ2. 

It follows that y − Tx1 ∈ (0, σ2) ⊂ T(B(0, r2))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Then, there exists x2 ∈  B(0, r2) so that‖y − Tx1 −

Tx2‖F < σ3. 

By induction, ify − Tx1 − ⋯ − Txn−1 ∈ (0, σn) ⊂ T(B(0, rn))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

then there exists xn ∈  B(0, rn) so that‖y − Tx1 − ⋯ − Txn−1 − Txn‖F < σn+1. 
Since E is a Banach space and∑ ‖xn‖E

∞
n=1 < ∑ rn

∞
n=1 = s < ∞ 
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there existsx = ∑ rn
∞
n=1 ∈ E.  Note that‖x‖E ≤ ∑ ‖xn‖E

∞
n=1 < s  implies that x ∈  B(0, s). Since T is 

continuous,y = lim
n→∞

T(∑ xk
n
k=1 ) = Tx ∈ T(B(0, s)) 

Hence, B(0, σ1)  ⊂  T(B(0, s)) and T(B(0, s)) is a neighbourhood of zero. 

Corollary 2.2.3 (Banach isomorphism theorem).Assume that E and F are two Banach spaces, and that T is 

a bijective continuous linear operator that maps Eto F. Further, it may be said that T−1 is likewise a bijective 

continuous linear operator. T is an example of an isomorphism. 

Proof.The open mapping theorem states that T is an open set. Given that T is both bijective and open, it is 

possible to get T−1, which is a continuous function. 

2.3 Closed Graph Theorem:  

2.3.1 Definition: Let E, F be normed spaces. Then the linear operatorT ∶  E →  Fis said to be closed 

operator if for every sequence {xn}  in E such that  

xn → x andTxn → y ⟹ Tx = y 

Alternative Definition:Define a normed space E × F, where the two algebraic operations are defined as, 
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) 

α(x, y) = (αx, αy), 
And the norm on E × F is defined by  

‖(x, y)‖ = ‖x‖ + ‖y‖. 
Then the operator T ∶  E →  F is closed operator if the graph of T, 
G(T) = {(x, Tx): x ∈ E}is closed in E × F 

Remark: Continuous linear operator is closed linear operator but the converse is not true (under certain 

conditions the converse is true which is stated in following theorem. 

2.3.2 Theorem: ( Closed Graph theorem): Let E, F be two Banach spaces and T ∶  E →  Fis a linear 

operator, then T is continuous ⟺ T is closed 

Proof.If T is continuous linear operator, then obviously T is closed linear operator.It sufficiently prove the 

converse,Conversely, suppose T is closed operator. Then the graph of T, G(T)is closed in E × F.  Moreover, 

it is subspace and so it is a complete space.                                        Define P: G(T) → Eby P(x, Tx) = x. It 

is easy to verify that P is continuous and surjective. By bounded inverse theorem, P−1: E ⟶ G(T) is 

continuous, that is ‖P−1(x)‖ ≤ c‖x‖, ∀x ∈ E for some c > 0. 
Hence T is bounded because of                                                                                         ‖T(x)‖ ≤ ‖Tx‖ +
‖x‖ = ‖(x, Tx)‖ = ‖P−1(x)‖ ≤ c‖x‖, ∀x ∈ E 

2.3.3 Definition (Perfectly convex set). A set K in a Banach space,Y is called perfectly convex if for every 

sequence{xk}k=1
∞   and every numbers λk  ≥  0 such that ∑ λk

∞
k=1 = 1,one has∑ λkxk

∞
k=1 ∈ K 

It is only for finite sequences {xk} that convex sets are able to meet this feature. (Why is that?) As a result, 

any set that is absolutely convex is also convex, but the opposite is not true. Here is an illustration: 

Proof. Assume B = ϵBY ⊆ K̅ we would like to show that
1

2
B ⊆ K  .The assumption clearly implies that B ⊆

K +
1

2
B, 

for the right side is the ∈ −neighbourhood of K in Y. Iterating this inclusion gives 

B ⊆ K +
1

2
(K +

1

2
B) = K +

1

2
K +

1

4
B 

⊆ K +
1

2
K +

1

4
(K +

1

2
B) = K +

1

2
K +

1

4
K +

1

8
B ⊆  ⋯ 

Therefore, B ⊆ K +
1

2
K +

1

4
K +

1

8
K +  ⋯ 

By perfect convexity (check!), we have
1

2
B ⊆

1

2
K +

1

4
K +

1

8
K +

1

16
K +  ⋯  ⊆ K 

This proves the lemma.  

 

3. CONCLUSION 

In conclusion, functional analysis serves as a foundational framework with wide-ranging applications across 

numerous scientific and technical fields. To solving difficult issues in quantum physics, engineering, signal 

processing, and data analysis, it is vital to have tools that are capable of handling infinite-dimensional 

spaces, studying operators, and analysing functions. In addition to contributing to innovation and 
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development in scientific and technical areas, the continual improvements in functional analysis continue to 

influence our comprehension of the mathematical foundations that underlie a variety of disciplines. 
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