Multiplication product rule of THAKKURA PHERU and its generalized rule

${ }^{1}$ S. N. Adhikary, ${ }^{\mathbf{2}}$ Jeetendra Kumar, ${ }^{3}$ Mahadeb Banerjee
${ }^{1}$ Head, ${ }^{2}$ Research Scholar, ${ }^{3}$ Student
University Department of Mathematics
S.K.M. University
Dumka, Jharkhand, India.

Abstract

The paper is addressed to the work of the mathematician Thakkura Pheru for obtain a product multiplication consisting of the same digit repeated nine times, where the digit is positive and less than 10. In the present study we generalized the rule which was given by the Indian mathematician Thakkura Pheru.

Key Words: Vedic Mathematics, Thakkura pheru, Ganitasarakaumudi (GSK), Multiplication.
MATHEMATICS SUBJECT CLASSIFICATION: 01A32, 01A05, 01A40
INTRODUCTION: Thakkura Pheru is a great north Indian Mathematician. He was an author of books on Mathematics, coins and gems. Thakkura Pheru gave a rule from his book Ganitasarakaumudi (GSK-4.61) for obtaining a product of multiplication consisting of the same digit repeated nine times.
Viz;
$12345679 \times \mathrm{a} \times 9=$ aaaaaaaa
Where, ' a ' is a positive integer and less than 10 .
Example - 1. $12345679 \times 7 \times 9=$?
Answer: $777777777 \quad(\therefore$ Nine times 7 by Thakkura Pheru rule)
Example - 2. $12345679 \times 8 \times 9=$?
Answer: $888888888 \quad(\therefore$ Nine times 8 by Thakkura Pheru rule $)$
Here, we shall try to make a generalized rule for multiplication consisting of the same digit repeated nine times by giving suitable cases.
Case - I: \quad When $\mathrm{a}=0$ and $\mathrm{a} \in$ negative integer
Then, we get
$12345679 \times 0 \times 9=000000000 \quad(\therefore$ Nine times 0$)$
Now if, $\mathrm{a} \in$ negative integer
Then, we get
$12345679 \times(-a) \times 9=-\{$ ааааааааа $\}$
Example - 3. Let $\mathrm{a}=-6$
Then, we get

$$
12345679 \times(-6) \times 9=-666666666 \quad(\therefore 9 \text { times } 6 \text { with negative sign })
$$

Now the generalized rule -
$12345679 \times \mathrm{a} \times 9=\left\{\begin{array}{ll}\text { aaaaaaaaa if } & 0 \leq a\langle 10, \quad a \in \text { positive integer } \\ -\{\text { aaaaaaaad }\} & \\ \text { If }-10\langle a \leq 0, & a \in \text { negative integer }\end{array}\right\}$
Case-II: When a \in integer which is greater and equal to 10 .
i.e., $a \geq 10, \quad a \in$ positive integer

$$
\left\{\begin{array}{cc}
a=10, & 12345679 \times 10 \times 9=1111111110 \\
a=11, & 12345679 \times 11 \times 9=1222222221 \\
a=12, & 12345679 \times 12 \times 9=1333333332 \\
a=13, & 12345679 \times 13 \times 9=1444444443 \\
: \\
: \\
a=18, & 12345679 \times 18 \times 9=1999999999
\end{array}\right\}
$$

If we take $\mathrm{a}=19$, than above rule doesn't work because the sum of digits "a" i.e., (19) must be less than 10 . Here,
$1+9=10 ;$ this is a contradiction.
Now, we see from 20 to 27, we get

$$
\left\{\begin{array}{cc}
a=20, & 12345679 \times 20 \times 9=2222222220 \\
a=21, & 12345679 \times 21 \times 9=2333333331 \\
a=22, & 12345679 \times 22 \times 9=2444444442 \\
a=23, & 12345679 \times 23 \times 9=25555555553 \\
\text { and so on } \\
a=27, & 12345679 \times 27 \times 9=2999999997
\end{array}\right\}
$$

If we take $\mathrm{a}=28$ and $\mathrm{a}=29$ than above rule doesn't work because the sum of digits "a" (i.e., 28 and 29) must be less than 10 .
Here,

$$
2+8=10 \text { and } 2+9=11 ; \text { this is a contradiction. }
$$

And so on
Now we establish generalized rule as below-
If $a=a_{1}, a_{2}$, where $a_{1}=1^{\text {st }}$ term of ' a ' and $a_{2}=2^{\text {nd }}$ term of ' a '.
Than

$$
12345679 \times a \times 9=\left\{\begin{array}{l}
a_{1}\left(a_{1}+a_{2}\right) \ldots \ldots(8 \text { times }) a_{2} \\
\text { if }\left(a_{1}+a_{2}\right) \leq 9
\end{array}\right\}
$$

i.e.,
$12345679 \times a \times 9=\left\{\begin{array}{ll}a_{1}\left(a_{1}+a_{2}\right) \ldots \ldots \ldots \ldots \ldots(\text { times }) a_{2} & 10 \leq a \leq 18 \\ & 20 \leq a \leq 27 \\ & 30 \leq a \leq 36 \\ & \text { and so on } \\ & a=90\end{array}\right\}$

Case - III: When a \in integer which is less and equal to 10.
i.e., $a \leq-10, a \in$ nagetive int eger

Example - 4. $12345679 \times(-21) \times 9=-2333333331$
Example - 5. $12345679 \times(-34) \times 9=-377777774$
If $a=-\left(a_{1}, a_{2}\right)$, where $a_{1}=1^{\text {st }}$ term of ' a ' and $a_{2}=2^{\text {nd }}$ term of ' a ', $\left(a_{1}, a_{2} \in Z^{+}\right)$.
Than
we establish generalized rule as bellow-

$$
12345679 \times a \times 9=\left\{\begin{array}{c}
-a_{1}\left(a_{1}+a_{2}\right) \ldots \ldots \ldots \ldots \ldots . .(8 \text { times }) a_{2} \\
\text { if }\left(a_{1}+a_{2}\right) \leq 9
\end{array}\right\}
$$

i.e.,

$$
12345679 \times a \times 9=\left\{\begin{array}{ll}
-\left\{a_{1}\left(a_{1}+a_{2}\right) \ldots \ldots(8 \text { times }) a_{2}\right\}, & a \in[-10,-18] \\
& a \in[-20,-27] \\
& a \in[-30,-36] \\
& \text { and so on } \\
& a=-90
\end{array}\right\}
$$

Case-IV: When $a \in$ positive int eger ; here $\mathbf{a}=\mathbf{a} 1, \mathbf{a} \mathbf{a}$ and $\left(a_{1}+a_{2}\right) \geq 10$

$$
(12345679 \times 19 \times 9=2111111109)
$$

$$
\binom{12345679 \times 28 \times 9=3111111108}{12345679 \times 29 \times 9=322222219}
$$

$$
12345679 \times 37 \times 9=4111111107
$$

$$
12345679 \times 38 \times 9=4222222218
$$

$$
12345679 \times 39 \times 9=4333333329
$$

$$
12345679 \times 46 \times 9=5111111106
$$

$$
12345679 \times 47 \times 9=5222222217
$$

$$
12345679 \times 48 \times 9=5333333328
$$

$$
12345679 \times 49 \times 9=5444444439
$$

$$
\left(\begin{array}{l}
12345679 \times 55 \times 9=6111111105 \\
12345679 \times 56 \times 9=6222222216 \\
12345679 \times 57 \times 9=6333333327 \\
12345679 \times 58 \times 9=6444444438 \\
12345679 \times 59 \times 9=6555555549
\end{array}\right)
$$

And so on
Then, we establish generalized rule as bellow-

$$
12345679 \times a \times 9=\left(\begin{array}{c}
\left(a_{1}+1\right)\left(m_{1}+m_{2}\right) \ldots, 7 \text { times } m_{2} a_{2} \\
\text { where, }, m_{1}=1 \text { st } \\
m_{2}=\text { lerm of }\left(a_{1}+a_{2}\right) \\
\text { term of }\left(a_{1}+a_{2}\right)
\end{array}\right)
$$

Example - 6. $12345679 \times 92 \times 9=102222222$ D
Example - 7. $12345679 \times 99 \times 9=1099999998$
Case - V: When a \in negative integer
such that $\quad\left(a_{1}+a_{2}\right) \geq 10$; where, $a=-\left(a_{1} \cdot a_{2}\right)$

$$
\text { and } a_{1}, a_{2} \in+v e Z
$$

Example - 8. $12345679 \times-(19) \times 9=-2111111109$
And so on
Then, we establish generalized rule as bellow-

$$
12345679 \times a \times 9=\left(\begin{array}{c}
-\left\{\left(a_{1}+1\right)\left(m_{1}+m_{2}\right) \ldots, 7 \text { times } m_{2} a_{2}\right\} \\
\text { where, } m_{1}=1^{\text {st }} \text { term of }\left(a_{1}+a_{2}\right) \\
m_{2}=\text { last term of }\left(a_{1}+a_{2}\right)
\end{array}\right)
$$

Example - 9. $12345679 \times-(55) \times 9=$?
Answer: here, $\mathrm{a}=-55$

$$
\begin{aligned}
& \mathrm{a}_{1}=5, \mathrm{a}_{2}=5 \\
& \left(\mathrm{a}_{1}+\mathrm{a}_{2}\right) \geq 10 \\
& \mathrm{~m}_{1}=1, \mathrm{~m}_{2}=0
\end{aligned}
$$

Required answer is
$=-\{(5=1)(1+0)(1+0)(1+0)(1+0)(1+0)(1+0)(1+0) 05\}$
$=-(6111111105)$.

CONCLUSION

We have framed the generalized rule for different intervals. Hence the multiplication becomes easier when we follow the above rule.

REFERENCES:

[1] Thakura Pheru Ganitasarakaumudi: The moonlight of the Essence of mathematics, editaed with introduction, Translation and Mathematical commentary by Sakhya, Manohar, New Delhi, 2009, pp. xxi-xxii.
[2] D.B.Ojha, "A new property of multiplication magic square" Journal of Emerging Technologies and Innovative Research (JETIR), vol. - 6, No - 2, PP. 892-898, February 2009.
[3] B.S.Yadav and M.Mohan (eds.), Ancient Indian Leaps into Mathematics, published by Birkhasur, New York-2011.
[4] Sreeramula Rajeswar Sarma "Mathematical Literature in the Regionel Languages of India", Indian Journal of History of Science, 28, 40227 (2009), PP. 201-212.
[5] Sreeramula Rajeswara Sarma, "Some Medieval Airthmetical Tables", Indian Journal of History of Science, 32, (1997), 191-198.
[6] Sreeramula Rajeswara Sarma, "Mathematical Literature in Telgu ; An Overview", Sri Venkateswara University Oriental Journal, 28, 7790, (1985).

